Family Ties

The puzzle Family Ties was written for the 2013 MIT Mystery Hunt, but it never made it to the hunt. Here’s your chance to solve a puzzle no one has seen before. I wrote the puzzle jointly with Adam Hesterberg. The puzzle is below:

Mathematics professor S. Lee studies genealogy and is interested in the origins of life.

  1. Alexei Mikhailovich Ivanov
  2. Alexei Petrovich Ivanov
  3. Amminadab
  4. Anna of Moscow
  5. Arador
  6. Arahad II
  7. Arassuil
  8. Arathorn I
  9. Arathorn II
  10. Aravorn
  11. Argonui
  12. Asger Thomsen
  13. Caecilia Metella Dalmatica
  14. Egmont
  15. Eldarion
  16. Ellesar
  17. Endeavour
  18. Faustus Cornelius Sulla
  19. Henry Frederick
  20. Hezron
  21. Isaac
  22. Ivan the Great
  23. Ivan the Terrible
  24. Jacob
  25. James I and VI
  26. James V
  27. Jens Knudsen
  28. John Francis
  29. Joseph Patrick
  30. Joseph Patrick
  31. Jørgen Jensen
  32. Judah
  33. Knud Nielsen
  34. Margaret Stuart
  35. Maria Donata
  36. Mary Stuart
  37. Matthew Rauch
  38. Mikhail Ivanovich Ivanov
  39. Niels Møller
  40. Ole Pedersen
  41. Peder Petersen
  42. Peter Jørgensen
  43. Petr Alexeyevich Ivanov
  44. Pharez
  45. Ram
  46. Robert Francis
  47. Rose Elizabeth
  48. Søren Thomsen
  49. Thomas Olsen
  50. Ursula Gertrud
  51. Vasily I of Moscow
  52. Vasily II of Moscow
  53. Vasili III of Russia
  54. Yuri of Uglich
  55. Zerah
Share:Facebooktwitterredditpinterestlinkedinmail

My Six Jobs

I promised to explain my job situation to my readers. I currently have six part-time jobs, which I describe below in the order that I started them.

The job I have had the longest is coaching math for competitions at AMSA Charter School. I started there in the spring of 2008 and I am still teaching there every week. I post my homework assignments on my webpage for other teachers and students to use.

The next longest has been as the Head Mentor at RSI, which I started in the summer of 2009. RSI is a great program where high school students from all over the world come to MIT to do research during summer vacations. It is amazing how much an ambitious student can do during a short five-week period. My first year I saw some great research done, but I was surprised that RSI papers were generally not available online. Beginning in 2012, at my recommendation, our Director Slava Gerovitch now posts the RSI papers at the math department RSI webpage.

As good a program as it is, RSI is too short for a research project. So we decided to develop our own program called PRIMES (Program for Research in Mathematics, Engineering, and Science for High School Students). I am also the Head Mentor in this program. I provide general supervision of all the projects and review conference slides and final papers. In addition to being the Head Mentor, I mentor my own students, which is great fun. I usually have three projects, but if something happens to a project or a mentor, I take it over.

Together with Pavel Etingof, PRIMES Chief Research Advisor, and Slava Gerovitch, PRIMES Director, I wrote an article Mathematical Research in High School: The PRIMES Experience that appeared in Notices.

My job #4, since the fall of 2013, is as a Teaching Assistant for the MIT linear algebra course.

This year I took on two more jobs at MIT. I am the Head Mentor at Mathroots, a summer program for high school students from underrepresented backgrounds. I am also teaching at PRIMES STEP, the program for gifted middle-school students in the Boston area. The goal of the program is to teach students mathematical thinking, have fun, and prepare them for PRIMES.

Overall, I have reached the stage in my career when I do not have time to breath and I still do not make enough money to pay my bills. The good news: my jobs bring me satisfaction. I just hope that I will not be too tired to notice that I am satisfied.

Share:Facebooktwitterredditpinterestlinkedinmail

The Advantage of a Window

I already wrote about the sliding-window variation of the Secretary Problem. In this variation, after interviewing a candidate for the job, you can pick him or any out of w − 1 candidates directly before him. In this case we say that we have a sliding window of size w. The strategy is to skip the first s candidates, then pick the person who is better than anyone else at the very last moment. I suggested this project to RSI and it was picked up by Abijith Krishnan and his mentor Shan-Yuan Ho. They did a good job that resulted in a paper posted at the arXiv.

In the paper they found a recursive formula for the probability of winning. The formula is very complicated and not explicit. They do not discuss the most interesting question for me: what is the advantage of a sliding window? How much better the probability of winning with the window as opposed to the classical case without the window?

Let us start with a window of size 2, and n applicants. We compare two problems with the same stopping point. Consider the moment after the stopping point when we see a candidate who is better than everyone else before. Suppose this happens in position b. Then in the classic problem we chose this candidate. What is the advantage of a window? When will we be better off with the window? We will be better if the candidate at index b is not the best, and the window allows us to actually reach the best. This depends on where the best secretary is, and what happens in between.

If the best secretary is the next, in position b + 1, then the window gives us an advantage. The probability of that is 1/n. Suppose the best candidate is the one after next, in position b + 2. The window gives us an advantage only if the person in position b + 1 is better than the person in position b. What is the probability of that? It is less than 1/2. From a random person the probability of the next one being better is 1/2. But the person in position b is not random, he is better than random, so the probability of getting a person who is even better decreases and is not more than 1/2. That means the sliding window wins in this case with probability not more than 1/2n.

Similarly, if the best candidate is in position b + k, then the sliding window allows us to win if every candidate between b and b + k is better than the previous one. The probability of the candidate being better at every step is not more than 1/2. That means, the total probability of getting to the candidate in position b + k is 1/2k-1. So our chances to win when the best candidate is at position b + k are not more than 1/2k-1n. Summing everything up we get an advantage that is at least 1/n and not more than 2/n.

The probability of winning in the classical case is very close to 1/e. Therefore, the probability of winning in the sliding window case, given that the size of the window is 2, is also close to 1/e.

Let us do the same for a window of any small size w. Suppose the best secretary is in the same window as the stopping candidate and after him, that is, the best candidate is among the next w − 1 people. The probability of this is (w − 1)/n. In this case the sliding window always leads to the best person and gives an advantage over the classical case. When else does the sliding window help? Let us divide the rest of the applicants into chunks of size w − 1. Suppose the best applicant is in the chunk number k. For the sliding window to allow us to get to him, the best candidate in every chunk has to be better than the best one in the previous chunk. The probability of that is not more than 1/2k-1. The probability that we get to this winner is not more that (w-1)/2k-1n. Summing it all up we get that the advantage of the window of size w is between (w − 1)/n and 2(w − 1)/n.

Share:Facebooktwitterredditpinterestlinkedinmail

From Tanks to Coins

I already wrote about my favorite problem from the 2015 All-Russian Math Olympiad that involved tanks. My second favorite problem is about coins. I do love almost every coin problem.

A coin collector has 100 coins that look identical. He knows that 30 of the coins are genuine and 70 fake. He also knows that all the genuine coins weigh the same and all the fake coins have different weights, and every fake coin is heavier than a genuine coin. He doesn’t know the exact weights though. He has a balance scale without weights that he can use to compare the weights of two groups with the same number of coins. What is the smallest number of weighings the collector needs to guarantee finding at least one genuine coin?

Share:Facebooktwitterredditpinterestlinkedinmail

Tanya Velikanova

My name is Tanya and here’s why. When my mom was pregnant, she was discussing the child’s name with my father, Gueliy Khovanov. They decided that she could choose a boy’s name while he could choose a girl’s name. She wanted me to be Andrey in honor of her half-brother who died in World War II. He wanted me to be Tanya in honor of the unrequited love of his life. In an act of incomprehensible generosity, my mother agreed to name me after this woman. My parents were not even married when I was born.

After the decision was made, I was born on my own Name Day. In Russian culture, different names are celebrated on different dates. The a holiday for Tanyas is especially big and it falls on January 25, the day I was born. This serendipity led me to be very attached to my given name.

When I was a child, I believe that my father introduced me to his love, Tanya, although I do not have any clear memory of her. I doubt they were ever actually together. I do remember how my father loved her all his life. Even today I am sure that his love for Tanya brushed off on me, being her namesake.

I especially remember one day, when I was still a kid, my father agonizing about Tanya and calling to offer her help. My mom grimaced when he offered to babysit her children. My parents were divorced by then, and my father showed no interest in babysitting his own children. Now I understand that watching Tanya’s children was the least he could do. This was happening in 1968 when the USSR invaded Czechoslovakia, and Tanya’s husband, Konstantin Babitsky, was one of the few people in the USSR who risked their lives to openly protest against it. Tanya’s life and freedom were also at risk. Offering any help was the right and only call.

Right before my father died of an illness in 1980, he asked me for one last favor: to tell Tanya that he had died. I was 20 years old and didn’t have a clue how to find her; I only knew that her name was Tanya Velikanova. She was a famous Soviet human rights activist and dissident. That made it dangerous for me and for the people I might ask for assistance.

I finally asked my father’s best friend to do it for me. He said that Tanya was in exile, but promised to pass a message to her. I am not sure he did it and I still feel guilty that I didn’t do it myself before she died.

I forgot to tell you how my dad met the love of his life. They met as teenagers at a math Olympiad, where she beat him.

Share:Facebooktwitterredditpinterestlinkedinmail

Magic SET Hypercube Continued

Magic SET Hypercube with two cards flipped over

I already wrote how I build a magic SET hypercube with my students. Every time I do it, I can always come up with a new question for my students. This time I decided to flip over two random cards, as in the picture. My students already know that any two cards can be completed to a set. The goal of this activity is to find the third card in the set without trying to figure out what the flipped-over cards are. Where is the third card in the hypercube?

Sometimes my students figure this out without having an explicit rule. Somehow they intuit it before they know it. But after several tries, they discover the rule. What is the rule?

Another set of questions that I ask my students is related to magic SET squares that are formed by 3 by 3 regions in the hypercube. By definition, each magic SET square has every row, column, and diagonal as a set. But there are four more sets inside a magic SET square. We can call them super and sub-diagonal (anti-diagonal) wrap-arounds. Can you prove that every magic SET square has to have these extra four sets? In addition, can you prove that a magic SET square is always uniquely defined by any three cards that do not form a set, and which are put into places that are not supposed to from a set?

Share:Facebooktwitterredditpinterestlinkedinmail

The Secretary Problem with a Sliding Window

I love The Secretary Problem. I first heard about it a long time ago with a different narrative. Then it was a problem about the marriage of a princess:

The king announces that it is time for his only daughter to marry. Shortly thereafter 100 suitors line up in a random order behind the castle walls. Each suitor is invited to the throne room in the presence of the princess and the king. At this point, the princess has to either reject the suitor and send him away, or accept the suitor and marry him. If she doesn’t accept anyone from the first 99, she must marry the last one. The princess is very greedy and wants to marry the richest suitor. The moment she sees a suitor, she can estimate his wealth by his clothes and his gifts. What strategy should she use to maximize the probability of marrying the richest person?

The strategy contains two ideas. The first idea is trivial: if the princess looks at a suitor and he is not better than those she saw before, there is no reason to marry him. The second idea is to skip several suitors at the beginning, no matter how rich they might seem. This allows the princess to get a feel for what kinds of suitors are interested in her. Given that we know the strategy, the interesting part now is to find the stopping point: how many suitors exactly does she have to skip? The answer is ⌊N/e⌋. (You might think that this formula is approximate. Surprisingly, it works for almost all small values. I checked the small values and found a discrepancy only for 11 and 30 suitors.)

The problem is called The Secretary Problem, because in one of the set-ups the employer tries to hire a secretary.

In many situations in real life it is a good idea to sample your options. Whether I’m shopping for an apartment or looking for a job, I always remember this problem, which reminds me not to grab the first deal that comes my way.

Mathematically, I try to find variations of the problem that are closer to real life than the classical version. Here’s one of the ideas I had: you can always delay hiring a secretary until you have interviewed several candidates. You can’t wait too long, as that good secretary you interviewed two weeks ago might have already found a job. And of course the king has a small window of time in which he can run out of the castle and persuade a suitor to come back before he saddles up his horse and rides away.

To make the problem mathematical we should fix the window size as an integer w. When you are interviewing the k-th suitor, you are allowed to go w − 1 suitors back. In other words, the latest you can pick the current suitor is after interviewing w − 1 more people. I call this problem: The Secretary Problem with a Sliding Window.

It is easy to extrapolate the standard strategy to the sliding window problem. There is no reason to pick a suitor who is not the best the princess have seen so far. In addition, if she sees the best person, it is better to wait for the last moment to pick him in case someone better appears. So the strategy should be to skip several people at the beginning and then to pick the best suitor at the last moment he is available.

The difficult part after that is to actually calculate the probabilities and find the stopping point. So I suggested this project to RSI 2015. The project was assigned to Abijith Krishnan under the direction of Dr. Shan-Yuan Ho. Abijith is a brilliant and hard-working student. Not only did he (with the help from his mentor) write a formula for the stopping point and winning probabilities during the short length of RSI, he also resolved the case when the goal is to pick one candidate out of the best two.

If you are interested to see what other RSI students did this year, the abstracts are posted here.

Share:Facebooktwitterredditpinterestlinkedinmail

From Graphs to Games

In my paper with Joshua Xiong on Nim Fractals we explained how to build an evolution graph corresponding to an impartial combinatorial game. The vertices of the graph are P-positions. And two vertices are connected if the two corresponding positions are consecutive P-positions in a longest possible optimal game.

What types of graphs do we get? An evolution graph should have at least one sink: these are our terminal P-positions. Also there are no directed loops: the game is finite. In addition, the distance from a vertex to sinks is uniquely defined: the number of directed edges that is needed to move from this vertex to a sink. This number is equal to half of the number of moves in the longest game, starting from the corresponding P-position.

A natural question arises: Can we build a game from a graph? The graph needs to satisfy the properties above. But other than that, can we? We can consider the graph itself as a game. Players can start at a vertex or an edge. From an edge, they can only move to a vertex where this edge ends. From a vertex they can move to any out-edge. The corresponding evolution graph is the graph itself. Vertices correspond to P-positions and edges to N-positions.

There is an equivalent game with a more uniform description. We put a vertex in the middle of every edge in the evolution graph. The new graph becomes bipartite. Players can start at any vertex. A move is allowed from a vertex following an out-edge to the vertex, where this edge ends. Vertices that are in the same part as terminal positions are P-positions. Other vertices are N-positions.

Share:Facebooktwitterredditpinterestlinkedinmail

Meta-Solving Multiple Choice

I explained to my AMSA students the idea of meta-solving multiple choice. Sometimes by looking at the choices without knowing what the problem is, it is possible to guess the correct answer. Suppose your choices are 2k, 2, 2/k, 10k, −2k. What is the most probable answer? There are several ideas to consider.

  • A problem designer considers different potential mistakes and tries to include the answers corresponding to most common mistakes. That means the answers corresponding to the mistakes are variations of the right answer. Thus, the right answer is a common theme in all the answers.
  • A problem designer tries not to allow the students to bypass the solution. So if only one of the choices is negative and the answer is negative, the students do not need to calculate the exact answer, they just need to see that it’s negative. That means the right answer cannot be the odd one out.

Both these considerations suggest a rule of thumb: the answers that are odd ones out are probably wrong. In the given example (2k, 2, 2/k, 10k, —2k), the second choice is an odd one out because it’s the only one that does not contain k. The third choice is an odd one out because it’s the only one in which we divide by k. The fourth choice is an odd one out because it’s the only one with 10 instead of 2. The last one is an odd one out because of the minus sign. Thus the most probable answer is 2k.

So I explained these ideas to my students and gave them a quiz, in which I took the 2003 AMC 10A test, but only gave them the choices without the problems. I was hoping they would do better than randomly guessing.

Luckily for me, I have six classes in a row doing the same thing, so I can make adjustments as I go along. Looking at the results of the first two groups of students, I discovered that they were worse than random. What was going on?

I took a closer look, and what do you know? Nobody marked the first or the last choice. The answers are in an increasing order, so the first is the smallest and the last is the largest. So these two numbers are odd ones out, in a way.

It is a good idea to consider 189 as an odd one out in the list 1, 2, 4, 5, 189. In many other cases, the fact that the number is either the smallest or largest is insufficient reason to consider it as the odd one out. For example, there is no reason to consider 1 to be an odd one out in the list 1, 2, 3, 4, 5. And the designers of AMC are good: a lot of problems have an arithmetic progression as a list of choices, where none of the numbers are obviously odd ones out.

To correct the situation of worse than random results, I discussed it with my students in my next classes. Problem designers cannot have a tradition in which the first answer is never the correct answer. If such a tradition existed, and people knew about it, that knowledge would help them guess. So the first answer should be correct approximately five times, which is a fifth of the total number of questions (25).

And we came up with a strategy. Use the odd one out method except for arithmetic progressions. Then add the choices to balance out the total number of the first answers, the second answers, etc.

That method worked. In my next four classes my students were better than random.

Share:Facebooktwitterredditpinterestlinkedinmail

Dodgers, Liars and Pathological Truth-Tellers

Professor Bock came to his office at the Math Department of Deys University and discovered that someone had broken in. Luckily he had a lunch scheduled with his friend Detective Radstein. Bock complained to the detective about the break-in and the detective agreed to investigate.

Nothing was stolen from the office. It looked like somebody had just slept on Professor Bock’s couch. The couch was bought recently and it was positioned so that it was impossible to see it through the tiny window of the office door, which had been locked. Interestingly, Professor Bock’s office was the only one with a couch. The detective concluded that the person who broke in knew about the couch and thus was from the Math Department. In addition, the couch was very narrow and couldn’t possibly sleep more than one person.

Investigating crimes at the Math Department of Deys University was very easy. This was due to a fact discovered by Detective Radstein on a previous case: every member of the department was one of three types:

  • A dodger who always tells the truth and answers the question directly, with one exception. If such a person is guilty and asked to confirm that, then s/he remains truthful, but dodges the question.
  • A liar who’s every statement is a lie. A liar might dodge or not dodge the question.
  • A pathological truth-teller who always answers the question directly and truthfully.

Thus solving a crime at the department is very easy. Detective Radstein just needs to ask every person two questions, “How much is 2+2?” and “Are you guilty?” Only a guilty dodger would answer “4” and dodge. Only a guilty truth-teller would answer “4” and “yes”. Only a guilty liar would answer something other than “4” and “no”.

Detective Radstein decided to enjoy himself by making this investigation more challenging. He asked everyone only one question “Are you guilty of breaking-in?” These are the first three replies:

—Albert: I did it.
—Bill: Albert didn’t do it.
—Connie: Albert did it.

It was amusing how many people knew where Albert slept, but these answers were enough for Detective Radstein to figure out the culprit. After this issue was resolved he asked Professor Bock, “While I am here, what other problems do you have at the department?”

“Well,” said the professor, “In fact, I would be grateful if you could help us resolve two more issues. This semester our expenditure for tea increased three times. It is clear someone is stealing tea. It’s also clear that this could only be someone who started working at the department this semester. There are two people who fit this description: David and Eve. So Detective Radstein asked each of them, “Are you stealing the tea?” He got the following answers:

—David: Eve steals the tea.
—Eve: Only one person steals the tea.

Having solved the Math Department’s tea problem Detective Radstein then asked Professor Bock, “What else?” “Well,” said Professor Bock, “one more thing. We have a lot of blackboards around the department. Every day a famous three-letter Russian curse word appears on the blackboards. The handwriting is always the same, so it is one person. Luckily the word starts with XY, so most people assume that this is some math formula. Anyway, I want to look into the eyes of the person who does this. I left the department late yesterday; only Fedor, Grisha and Harry were here. The blackboards were clean. This morning when I opened up the Math Department, the vulgar swearword had been written on the blackboards. I don’t suspect someone of sneaking into the department at night to scribble on our blackboards. I am certain it is one of the three people I mentioned.”

Once again Detective Radstein asked the suspects whether they did it.

—Fedor: Grisha did it.
—Grisha: Fedor did it.
—Harry: I do not speak Russian.

And again Detective Radstein solved the case. He was surprised that everyone in the department knew what everyone else was doing. Only his friend Professor Bock seemed clueless.

If you were the detective, would you be able to help Professor Bock?

Share:Facebooktwitterredditpinterestlinkedinmail