Problem Solving and Research

By Tanya Khovanova and Richard Stanley

This essay is written especially for high school and undergrad math lovers who enjoy problem solving and who plan to major in mathematics. One of the authors, Tanya, often received this advice when she was an undergraduate in Russia: “Problem solving is child’s play. You’ll have to change your attitude if you plan to succeed in research.”

Perhaps that’s why some famous problem solvers, even those who won gold medals at IMO, became not-so-famous mathematicians. To help you avoid that fate, we’ll discuss the ways in which research is unlike problem solving.

Is research different from problem solving?

Yes and no. There are many mathematicians who continue problem solving as their form of research. Remember Paul Erdos who used to suggest a lot of problems and even offered money rewards for solutions. Many mathematicians solve problems posed by other people. You might consider Andrew Wiles as the ultimate math problem solver: he proved Fermat’s last theorem, which had been open for 400 years. Though he could not have done it without the many theories that had already been generated in the search to find the elusive proof.

You can become a mathematician and continue to look around you for problems to solve. Even though this is still problem solving, the problems will be very different from competition problems, and you will still need to adjust to this type of research.

Problems you solve during research

So, what is the difference between problems that mathematicians solve during competition and the problems they tackle for their research?

Expected answer. In competition problem solving you know there is a solution. Often you know the answer, but you just need to prove it. In research there is no guarantee. You do not know which way it will go. For this reason finding counter-examples and proving that some ideas are wrong is a positive contribution, for it can eliminate some possibilities. So one adjustment is that you might start valuing negative answers.

Difficulty level. Competition problems are designed to be solved in one hour, so you are expected to generate an idea in just minutes. In research the problem might drag on for years, because it is far more difficult. If you get used to the instant gratification of competition problem solving, you might find the lengthy work of research frustrating. It’s very important to adjust your expectations so that you won’t drop a problem prematurely. You need to measure progress in small intermediate steps and learn to appreciate this different rhythm.

Motivation. Although you miss the euphoria of finding quick solutions, you get a different kind of reward with research. Because no one knows the answer in advance, when you solve the problem, you are the first to do so. You have opened up a new truth.

Time limits. In competitions you have a time limit for every problem. In research you set your time limits yourself. That allows you to put a problem aside and come back later if necessary. In a sense you can think about several problems at the same time.

Your passion. You can choose your problems yourself. Research is much more rewarding if you follow your heart. In competitions you have to spend time on problems you might not like. Here you have an option to choose and pick only the problems that appeal to you. Thus, you become more motivated and as a result more successful.

Finding a problem

After solving problems posed by other people, the next step is to pose math problems yourself. As we mentioned before, in research you do not always have a strictly-defined problem. It is a significant adjustment to move from solving already-defined problems to posing the problems yourself.

Generalizations. Often you can generalize from an existing problem to more general cases. For example, if you see a problem for n=3, you can wonder what happens for any n, or for any prime n.

Being on the lookout. Sometimes a situation puzzles you, but you can’t formulate a specific problem around that situation. For example, why do most of the terms in the sequence end in 9? Is there a reason for that? Or, you might find that a formula from your integrable systems seminar is similar to a formula from your representation theory class. This might lead you to the essential research question: “What is going on?” You always need to be on the lookout for the right questions.

Value. When you create your own research problems it is crucial to always ask yourself: Is the problem I am creating important? What is the value of this problem? There is no a good reason to create random generalizations of random problems. If the problem you found interests you very much, that is the first sign that it might interest other people; nonetheless, you should still ask yourself how this problem will help advance mathematics.

Mathematics is not only problem solving

There are other things to do than solve problems. There are many mathematicians who work differently, who don’t solve problems or don’t only solve problems. Here are some of the many options mathematicians have:

Building structures. You may not be interested in calculating the answer to a question, but rather in building a new structure or a new theory.

Advancing the language. When you invent new definitions and new notations, you will help to simplify a math language so that the new language will allow you to prove your results and other peoples’ results faster and clearer.

Unification. Sometimes you notice two results in two different areas of mathematics with some kind of similarity. Explaining why these results are the same might create a new understanding of things. It is great to unify two different areas of mathematics.

Explaining. Very often proofs are not enough. Why is something true? What’s the reason and what’s the explanation? It is good to ask yourself a “why” question from time to time, such as, “Why is this proof working?” When you find an answer, it might become easier to understand what to do next and how to generalize your proof.

Directions. Many mathematicians are valued not for the problems they solve or suggest, but for ideas and directions they propose. Finding a new direction for research can generate unexpected opportunities and create tons of math problems on the way. It can be valuable to come up with good conjectures, even if you have no hope of solving them yourself. Two example of this are the Weil conjectures (eventually proved by Deligne) and the Langlands program, which is still incomplete but which has generated a huge amount of important research.

Vision. What is the most general thing that can be proved by this technique? What kinds of improvements and refinements are there? It is good to step back from the problem you solved and meta-think about it.

As you can see, problem solving is just the beginning of all that mathematics can offer you. Mathematicians find these other options very rewarding, so it’s worth your while to try these varied aspects of mathematical work to see if you have a taste for other things. If you don’t venture beyond problem solving you might miss the full beauty of mathematics.

Share:Facebooktwitterredditpinterestlinkedinmail

Physics Jokes

I could no longer resist: I added a section of physics jokes to my math jokes collection:

* * *

A hydrogen atom says to the bartender, “Hey buddy, have you seen an electron around here? I seem to have lost mine.”
“Are you sure you lost it?” the bartender asks.
And the hydrogen atom answers, “I’m positive!”

* * *

Heisenberg gets stopped on the motorway by the police.
Cop: “Do you know how fast you were going sir?”
Heisenberg: “No, but I know exactly where I am.”

* * *

A photon checks into a hotel. The bellhop asks him, “Can I help you with your luggage?”
To which the photon replies, “I don’t have any. I’m traveling light.”

Share:Facebooktwitterredditpinterestlinkedinmail

The Odder One Out

My recent entry, where I asked you to choose the odd one out among these images

Odd One Out

was extremely popular. It was republished all around the world and brought my blog as much traffic in one day as I used to get in a month. Not only did I read the many comments I received, I also followed up on other peoples’ blogs who reprinted my puzzle — at least those that were in either Russian or English. I also got private emails and had many conversations in person about it. The diversity of answers surprised me, so I would like to share them with you.

As I’ve said before, I do not think there is a correct answer to this type of question, but I was disappointed by some of the answers. For example, those who simply said, “The green one is the odd one out,” made me feel that either they hadn’t read the question or hadn’t thought about it very much. It’s a shame that these people spent more time sharing their opinion with the world than thinking about the problem in the first place.

I wouldn’t mind someone arguing that the green one is the odd one out, but in this case an explanation is in order. Many people did offer explanations. Some told me that we perceive the color difference stronger than all other parameters I used, and the green figure pops out of the picture more than anything else. In fact, I personally perceive color difference the strongest among all the parameters, but since there are people who are color blind, I would disregard my feelings for color as being subjective.

You can create a whole research project out of this puzzle. For example, you can run an experiment: Ask the question, but flash the images above very fast, so there is no time for analysis — only time to guess. This allows us to check which figure is the first one that people perceive as different. Or you can vary the width of the frame and see how the perception changes.

Color was not the only parameter among those I chose — shape, color, size and the existence of a frame — that people thought was more prominent. My readers weighed these parameters unequally, so each argued the primary importance of the parameter they most emphasized. For example, one of my friends argued that:

The second figure should be the odd one out as, first, it is the only one without a frame, and, second, it is the only one comprised of one color rather than two. So it differs by two features, as others differ only by one feature.

A figure having one color is the consequence of not having a frame, so this particular friend of mine inflated the importance of not having a frame.

However, I can interpret any feature as two features. For example, I can say that the circle is the odd one out because not only is it a different figure, but it also doesn’t have any angles. Similarly, the last one is the smallest one and the border width is in a different proportion to its diameter.

On a lighter side, there were many funny answers to the puzzle:

  • The one that says I am special.
  • The right one because it is right.
  • The fourth one, because four is the only composite index.
  • The one that says I am not special.

For the which-is-the-odd-one-out questions, the designer of the question is usually expecting a particular answer. So here’s the answer I expected:

There is only one green figure. Wait a minute, there is only one circle. Hmm, there is only one without a frame and there’s only one small figure. I see! The first one is the only figure that is not the odd one, that doesn’t have a special property, so the first must be the odd one out. This is cool!

And the majority of the answers were exactly as I expected.

Since this is a philosophical problem, some of the responses took it to a different level. One interesting answer went like this:

All right, the last four figures have special features; the first figure is special because it is normal. Hence, every figure is special and there are no odd ones here.

I like this answer as the author of it equated regular features with a meta-feature, and it is a valid choice. This answer prompted me to write another blog entry with a picture where I purposefully tried to not have an odd one out:

Find Odd One Out

Though I wrote that the purpose of this second set of images is to show an example where there is no odd one out, my commentators still argued about which one was the odd one out here.

Finally, I would like to quote Will’s comment to my first set of images:

The prevailing opinion is that the first is least unique and is therefore the oddest. But it is the mean and the others are one deviation from it. Can the mean be the statistical anomaly?

And Cedric replied to Will:

Yes, I think the mean can be a statistical anomaly. The average person has roughly one testicle and one ovary. But a person with these characteristics would certainly be an anomaly.

Share:Facebooktwitterredditpinterestlinkedinmail

It Has Been Two Years

Gelfand’s Memorial

Israel Gelfand’s memorial is being held at Rutgers on December 6, 2009. I was invited as Gelfand’s student.

My relationship with Gelfand was complicated: sometimes it was very painful and sometimes it was very rewarding. I was planning to attend the memorial to help me forget the pain and to acknowledge the good parts.

I believe that my relationship with Gelfand was utterly unique. You see, I was married three times, and all three times to students of Gelfand.

Now that I know that I can’t make it to the memorial, I can’t stop wondering how many single male students of Gelfand will be there.

Share:Facebooktwitterredditpinterestlinkedinmail

Octopus Problems

I’ve translated two problems from the 2009 Moscow Math Olympiad. In both of them our characters are genetically engineered octopuses. The ones with an even number of arms always tell the truth; the ones with an odd number of arms always lie. In the first problem (for sixth graders) four octopuses had a chat:

  • “I have 8 arms,” the green octopus bragged to the blue one. “You have only 6!”
  • “It is I who has 8 arms,” countered the blue octopus. “You have only 7!”
  • “The blue one really has 8 arms,” the red octopus said, confirming the blue one’s claim. He went on to boast, “I have 9 arms!”
  • “None of you have 8 arms,” interjected the striped octopus. “Only I have 8 arms!”

Who has exactly 8 arms?

Not only do octopuses lie or tell the truth according to the parity of the number of their arms, it turns out that the underwater world is so discriminatory that only octopuses with six, seven or eight arms are allowed to serve Neptune. In the next problem (for seventh graders), four octopuses who worked as guards at Neptune’s palace were conversing:

  • The blue one said, “All together we have 28 arms.”
  • The green one said, “All together we have 27 arms.”
  • The yellow one said, “All together we have 26 arms.”
  • The red one said, “All together we have 25 arms.”

How many arms does each of them have?

My students enjoyed the octopuses, so I decided to invent some octopus problems of my own. In the first problem, the guards from the night shift at Neptune’s palace were bored, and they started to argue:

  • The magenta one said, “All together we have 31 arms.”
  • The cyan one said, “No, we do not.”
  • The brown one said, “The beige one has six arms.”
  • The beige one said, “You, brown, are lying.”

Who is lying and who is telling the truth?

In the next problem the last shift of guards at the palace has nothing better to do than count their arms:

  • The pink one said, “Gray and I have 15 arms together.”
  • The gray one said, “Lavender and I have 14 arms together.”
  • The lavender one said, “Turquoise and I have 14 arms together.”
  • The turquoise one said, “Pink and I have 15 arms together.”

What number of arms does each one have?

Share:Facebooktwitterredditpinterestlinkedinmail

An Older Woman, A Younger Man

An ancient Russian joke:

Patient: Doctor, is there a medicine I can use to prevent my girlfriends from become pregnant?
Doctor: Kefir.
Patient: Should I drink it before or after sex?
Doctor: Instead of.

I have a more pleasurable suggestion than drinking kefir: date postmenopausal women. There are many other reasons why men enjoy dating older women, but since my blog is about mathematics, I would like to dig into some relevant numbers.

We know that boys are born more often than girls, and men die earlier than women. Somewhere around age 30 the proportion in population switches from more boys to more girls. And it gets more skewed with age. So there’s a deficit of older men. In addition, a big part of the population is married, making the disproportions in singles group more pronounced. So I decided to look at the numbers to see how misshaped the dating scene is.

This 2008 data comes from the U.S. government census website’s table “Marital Status of the Population by Sex and Age: 2008. (Numbers in thousands. Civilian non-institutionalized population.)” To calculate the number of singles, I summed up the widowed, divorced and never married columns.

Age Group Single Male Single Female Ratio M/F
Total 44,707 51,293 0.87
15 to 17 years 6,729 6,513 1.03
18 to 24 years 13,074 11,848 1.10
25 to 29 years 6,639 5,224 1.27
30 to 34 years 3,901 3,343 1.17
35 to 39 years 3,354 2,965 1.13
40 to 44 years 3,410 3,270 1.04
45 to 49 years 3,476 3,591 0.97
50 to 54 years 2,979 3,385 0.88
55 to 59 years 2,309 3,123 0.74
60 to 64 years 1,552 2,746 0.57
65 to 69 years 1,082 2,423 0.47
70 to 74 years 787 2,162 0.36
75 to 79 years 790 2,391 0.33
80 to 84 years 685 2,430 0.28
85 years and over 669 2,391 0.28

These data alone cannot explain the dating situation. For example, I have no way of knowing what proportion of each gender isn’t interested in dating the opposite sex, or even in dating altogether. But the trend is quite clear: the proportion of men in younger categories is much higher. That implies that there is less competition for older women. So those young men who are open to dating much older women might have more options and those options might be more interesting.

I just turned 50 and plan to return to dating again. Looking at the data I see that there are 11 million single men older than me and 34 million who are younger than me. If I were to pick a single man randomly, I am three times more likely to end up with a younger man.

Supposedly we live in a free society, where people can do what they want as long as they do not harm anyone else. Still our society often disapproves of women dating much younger men. Consider this definition from Wikipedia:

“Cougar — a woman over 40 who sexually pursues a much younger men.”

This derogatory term portrays such women as predatory. Not only is there nothing wrong with women dating younger men, but it makes no sense for older women to ignore the imbalance of the dating scene and be closed to relationships with much younger men. After all, the demographics are also affected by the fact that women live longer, probably because of their healthy life style, non-risky behavior and positive attitude to life.

Can someone explain to me again why sane, healthy, non-risky women with positive attitudes to life are called “cougars”?

Share:Facebooktwitterredditpinterestlinkedinmail

Beliefs that Might Save Your Life

The first episode of Numb3rs: Season Six reminded me of the hangman’s paradox. Here is a one-day version of the hangman’s paradox:

Suppose you are in a prison and the guard says to you, “You will be hanged tomorrow at noon and it will be a surprise.” You presume that you can’t be surprised since they already told you, so there is a contradiction in what they’ve said. Therefore, you conclude that they can’t hang you and you relax. Next day at noon the guard comes for you, to take you to be hanged, and you are utterly surprised. Oops.

What I do not like about this paradox is that it assumes that you do not know about the paradox. I, on the other hand, imagine that you, my reader, are logical and intelligent. So the moment the guard tells you that you will be hanged tomorrow at noon and it will be a surprise, you realize that the situation depends on what you decide to believe in now. If you decide that you won’t be hanged tomorrow, then you will have a relatively relaxing day today and you will be caught by surprise tomorrow and die. If you decide that you will die tomorrow, then you will have a nerve-wracking day today, but the guard may release you, to save his honor, since you won’t be surprised.

The original hangman’s paradox in which the guard tells you that you will be hanged on a weekday the following week and that you will be caught by surprise, also assumes that you are not aware of the paradox. If you are aware of the paradox, you know that usually guards in this paradox come for you on Wednesday, so you can prepare yourself. Actually, to guarantee your survival, if not your feeling of moral superiority, you can daily persuade yourself to belief that you will be hanged at noon the next day. This way, you will never be caught by surprise. If you are a person who can control your own beliefs, you may be able to save your life.

Share:Facebooktwitterredditpinterestlinkedinmail

Why Modulo 11?

The book An Introduction to Diophantine Equations by Titu Andreescu and Dorin Andrica is targeted at people preparing for USAMO and IMO. It contains a lot of problems on Diophantine equations from math Olympiads used in various math Olympiads all over the world.

The first chapter discusses several methods for solving Diophantine equations: decomposition, using inequalities, using parameters, modular arithmetic, induction, infinite descent, and other miscellaneous ideas. Each sub-chapter starts with a short description of the method, accompanied by several solutions to sample problems. At the end of each sub-chapter there are a plethora of exercise problems.

The second and the third chapters are more theoretical. The former discusses some classical equations and the latter looks at Pell’s equation. These two chapters also contain problems, but the bulk of the chapters is devoted to basic theory that is essential to an understanding of Diophantine equations.

For those who are training for the Olympiads, this is an important book to own, not only because there are few other books on the subject, but because it provides so many useful problems.

I’ve long complained that most training books for math competitions leave out any discussion of how we choose a method by just looking at a problem. Andreescu and Andrica didn’t fill that gap with this book.

Perhaps in their next book they will point out clues that indicate that a particular problem might be solved by the parametric method. And explain which types of problems are best solved with induction. Let them challenge students to find those clues in a problem that help us to judge which method might be most promising, instead of randomly trying one method after another. Let me give you a sample problem from the book, which originated at the Balkan Mathematical Olympiad:

Prove that the equation x5 – y2 = 4 has no solutions in integers.

The solution is to take the equation modulo 11, and see that it is impossible.

Is there a reason to start with the modular arithmetic method and not with other methods? If we use modular arithmetic, do we recognize why it’s best to start with 11? I’m convinced that this problem has sufficient clues to suggest starting with checking this equation modulo 11.

I wonder if you, my readers, agree with me. If so, can you explain which hints in the problem lead to taking the equation modulo 11? I believe it should be a part of competition training to learn to identify clues that suggest that one direction might be preferable to the others.

Share:Facebooktwitterredditpinterestlinkedinmail

HMNT 2009

I love Harvard-MIT Math Tournaments. I like the mini-events, especially when I learn a new game. I also like the guts round, where I enjoy the adrenaline rush of watching the progress in real time. I also like the fact that I know many of the kids from different teams: my current students, my former students, the members of my club, my Sergei’s friends.

The problems for the competitions are designed by undergraduate students at MIT and Harvard. Kudos to them. Still, I was somewhat disappointed with the November 2009 problems. Most problems are variations of standard problems with different parameters. It is not easy to design a problem, but I was hoping for something fresh.

My favorite problem from the HMNT 2009 tournament was in the theme round:

There are five guys named Alan, Bob, Casey, Dan, and Eric. Each one either always tells the truth or always lies. You overhear the following discussion between them:

  • Alan: “All of us are truth-tellers.”
  • Bob: “No, only Alan and I are truth-tellers.”
  • Casey: “You are both liars.”
  • Dan: “If Casey is a truth-teller, then Eric is too.”
  • Eric: “An odd number of us are liars.”

Who are the liars?

My second favorite problem was in the guts round:

Six men and their wives are sitting at a round table with 12 seats. These men and women are very jealous — no man will allow his wife to sit next to any man except for himself, and no woman will allow her husband to sit next to any woman except for herself. In how many distinct ways can these 12 people be seated such that these conditions are satisfied? (Rotations of a valid seating are considered distinct.)

This was the funniest problem:

You are trapped in ancient Japan, and a giant enemy crab is approaching! You must defeat it by cutting off its two claws and six legs and attacking its weak point for massive damage. You cannot cut off any of its claws until you cut off at least three of its legs, and you cannot attack its weak point until you have cut off all of its claws and legs. In how many ways can you defeat the giant enemy crab? (Note that the legs are distinguishable, as are the claws.)

It is difficult to arrange so many problems for four rounds without mistakes. The error in the following problem is not a typo and it bothers me that no one caught it:

Pick a random digit in the decimal expansion of 1/99999. What is the probability that it is 0?

Hey, there is no uniform distribution on an infinite set of integers: picking a random digit is not defined.

Share:Facebooktwitterredditpinterestlinkedinmail