The First Western IMO

The International Math Olympiad started in Eastern Europe in 1959. Romania was the first host country. The Olympiad grew and only in 1976 did it move outside the Eastern bloc. The competition was held in Austria.

I was on the Soviet team in 1975 and 1976, so I was able to compare competitions held in Eastern vs. Western countries. Of course, the Austrian Olympiad was much better supported financially, but today I want to write about the differences in how our team was prepped.

Before our travel to Austria the Soviet team members were gathered in a room with strangers in suits for a chat. I assumed that we were talking to the KGB. They gave us a series of instructions. For example, they told us not to leave the campus during the competition, to always walk in groups, and to avoid talking to kids from countries that are enemies of the USSR. They warned us that they would be watching, and I was scared to death.

Now that I am older and wiser, I understand that their goal was to frighten us. Our team traveled with adult supervisors, who were trusted by the KGB. But for several days during the grading period of the competition, our supervisors were not allowed to see us. So the KGB wanted us to be too afraid to be very adventurous when we were left on our own.

In addition, the KGB had a Jewish problem. In general, Jews were not allowed to go abroad. I had many Jewish friends who qualified for the pre-IMO math camp where the team was chosen, but who were not able to get on the IMO because of delays with their travel documents. Some local bureaucrats were eager to impress the KGB and therefore held up visas for Jewish students, preventing them from being on the team. But the team selection process itself wasn’t yet corrupt in 1976. So every year despite the efforts of the system, some young Jewish mathematicians would end up on the team.

Before 1976, the Olympiad was in the Eastern bloc, so the KGB wasn’t quite so concerned about having Jewish members on the team. But Austria was not only a Western country, it was also the transition point for Jewish refugees from the Soviet Union. The speed with which the IMO moved their competition to a Western country was much faster than the Soviet bureaucratic machine could build a mechanism for completely preventing Jews from joining the team.

One very strong candidate, Yura Pass, didn’t get his documents, but two other Jewish boys made it on to the team that was going to Austria. They were joking that they would be the only Soviet Jews who would go to Austria and actually come back. They did come back, only to go forward later: both are now math professors working in the US.

Because we had Jewish members on our team, it gave the KGB a special extra reason to scare us. But the biggest pressure was to win. We were told that 1976 was the most important year for the Soviet team to be the best. We were told that capitalist countries spread rumors that the judges in Eastern bloc countries favored the Soviet team and that the relative success of the Soviet team throughout the years had not been fully deserved. Now that the competition was in Austria, the suits told us, the enemies of the USSR were hoping for the downfall of the Soviet team. Our task was to prove once and for all that the Soviet students were the best at math, and that the rumors were unfounded. We had to win the team competition not only to prove ourselves, but also to clear the name of the Soviet team for all the previous years.

We did have a very strong team. The USSR came out first with 250 points, followed by the UK with 214 points and the USA with 188 points. Out of nine gold medals, we took four.

We could have gotten one more gold medal if Yura Pass had been allowed on the team. Yura was crushed by the machine’s treatment of Jews and soon afterwards quit mathematics.

Share:Facebooktwitterredditpinterestlinkedinmail

How to Live Longer

I just received a mass email on how to live longer and it made these points:

Tip 1. Delay your retirement. Studies show that people who retire at 65 live longer than people who retire at 60.

Tip 2. Sex makes you younger. Studies show that older people who have sex twice a week look ten years younger than their peers who do not have sex at all.

People who draw conclusions from such studies usually do not understand statistics. Correlation doesn’t mean causality. Let me use the above-mentioned studies to reach different conclusions by reversing the causality assumption of the unknown writer of the mass email. You can compare results and make your own decisions.

Case 1. Studies show that people who retire at 65 live longer than people who retire at 60. Reversed causality: People who live longer are healthier, so they are able to keep working and to retire later in life.

Case 2. Studies show that older people who have sex twice a week look ten years younger than their peers who do not have sex at all. Reversed causality: Older people who look ten years younger than their peers can get laid easier, so they have sex more often.

Share:Facebooktwitterredditpinterestlinkedinmail

Hats and Rooms

Sergei just came back from MOP — Mathematical Olympiad Summer Program, where he was a grader. The first question I asked him was, “What was your favorite math problem there?” Here it is:

There are wisemen, hats and rooms. Hats are of different color and there are enough hats of each color for every wisemen. There are enough rooms, so that you can assign a different room for every color. At some moment in time the sultan puts hats on the wisemen’s heads, so as usual they see all other hats, but do not see their own hat color. At the same time, each wiseman has to choose a room to go to. If two wisemen have the same hat color, they should go to the same room. If they have different hat colors, they should go to different rooms. What strategy should the wisemen decide upon before this event takes place?

Oh, I forgot to mention the most interesting part of this problem is that you shouldn’t assume that the number of wisemen or hats or rooms is finite. You should just assume that they have the power of choice.

Share:Facebooktwitterredditpinterestlinkedinmail

Shannon Entropy Rescues the Tuesday Child

My son Alexey Radul and I were discussing the Tuesday’s child puzzle:

You run into an old friend. He has two children, but you do not know their genders. He says, “I have a son born on a Tuesday.” What is the probability that his second child is also a son?

Here is a letter he wrote me on the subject. I liked it because unlike many other discussions, Alexey not only asserts that different interpretations of the conditions in the puzzle form different mathematical problems, but also measures how different they are.

by Alexey Radul

If you assume that boys and girls are symmetric, and that days of the week are symmetric (and if you have no information to the contrary, assuming anything else would be sheer presumption on your part), then you can be in one of at least two states.

1) You say that “at least one son born on a Tuesday” is all the information you have, in which case your distribution including this information is uniform over consistent cases, in which case your answer is 13/27 boy and your information entropy is

− ∑27 (1/27) log(1/27) = − log(1/27) = 3.2958.

2) You say that the information you have is “The guy might have said any true thing of the form ‘I have at least one {boy/girl} born on a {day of the week}’, and he said ‘boy’, ‘Tuesday’.” This is a different mathematical problem with a different solution. The solution: By a symmetry argument (see below [*]) we must assign uniform probability of him making any true statement in any particular situation. Then we proceed by Bayes’ Rule: the statement we heard is d, and for each possible collection of children h, the posterior is given by p(h|d) = p(h)p(d|h)/p(d). Here, p(h) = 1/142 = 1/196; p(d) = 1/14; and p(d|h) is either 1 or 1/2 according as whether his other child is or is not another boy also born on a Tuesday (or p(d|h) = 0 if neither child is a boy born on a Tuesday). There are 1 and 26 of these situations, respectively. The answer they lead to is of course 1/2; but the entropy is

− ∑ p log p = − 1/14 log 1/14 − 26/28 log 1/28 = 3.2827

Therefore that assumed additional structure really is more information, which is only present at best implicitly in the original problem. How much more information? The difference in entropies is 3.2958 – 3.2827 = 0.0131 nats (a nat is to a bit what the natural log is to the binary log). How much information is that? Well, the best I can do is to reproduce an argument of E.T. Jaynes’, which may or may not really apply to this situation. Suppose you have some repeatable experiment with some discrete set of possible outcomes, and suppose you assign probabilities to those outcomes. Then the number of ways those probabilities can be realized as frequencies counted over N trials is proportional to eNH, where H is the entropy of the distribution in nats. Which means that the ratio by which one distribution is easier to realize is approximately eN(H1-H2). In the case of N = 1000 and H1 – H2 = 0.0131, that’s circa 5×105. For each way to get a 1000-trial experiment to agree with version 2, there are half a million ways to get a 1000-trial experiment to agree with version 1. So that’s a nontrivial assumption.

[*] The symmetry argument: We are faced with the following probability assignment problem

Suppose our subject’s first child is a boy born on a Tuesday, and his second child is a girl born on a Friday. What probability must we assign to him asserting that he has at least one boy born on a Tuesday?

Good question. Let’s transform our coordinates: Let Tuesday’ be Friday, Friday’ be Tuesday, boy’ be girl, girl’ be boy, first’ be second and second’ be first. Then our problem becomes

Suppose our subject’s second’ child is a girl’ born on a Friday’, and his first’ child is a boy’ born on a Tuesday’. What probability must we assign to him asserting that he has at least one girl’ born on a Friday’?

Our transformation necessitates p(boy Tuesday) = p(girl’ Friday’), and likewise p(girl Friday) = p(boy’ Tuesday’). But our state of complete ignorance about what’s going on with respect to the man’s attitudes about boys, girls, Tuesdays, Fridays, and first and second children has the symmetry that question and question’ are the same question, and must, by the desideratum of consistency, have the same answer. Therefore p(boy Tuesday) = p(boy’ Tuesday’) = p(girl Friday) = 1/2.

Share:Facebooktwitterredditpinterestlinkedinmail

Interns or Slaves?

My classmate Misha gave me a math problem. Although I liked the math part, I hated the setup. Here is the problem using the new setup:

You are hoping to get very rich one day and you base your hopes on your new invention: a diet pill. The pill works beautifully and doesn’t have side effects. Patients simply take a pill when they get hungry. Within one hour they will fall asleep and will be unable to awake for exactly two hours, at which time they will awake by themselves feeling completely sated.
You have just arrived at your lab, when you realize that one of your interns has misplaced your bottle of wonder pills. After some investigation, you come to the conclusion that your bottle is on the shelf with 239 other bottles that contain a placebo. Unfortunately, those placebo bottles were custom-designed for your statistical tests to exactly match your medicine bottle.
You need to bring the medicine bottle to your boss in two hours. While you panic, all your five interns volunteer for experiments, hoping to be mentioned in your paper. Can you find your bottle in two hours?

The problem Misha gave me had 240 barrels of wine, one of which contained deadly poison and five slaves who could be spared.

I do not like killing people even when they are imaginary. But while I was slow in inventing my own setup, the original version of the puzzle started making the rounds on the Internet. So I decided to kill the problem by writing the solution.

The strategy is to give out some pills immediately, wait for one hour and see who falls asleep. The next step is to give some other pills at the beginning of the next hour to some of the interns who are awake.

Let’s count the information you can get out of this. Each intern will experience one of three different situations: falling asleep in the first hour, in the second hour, or not falling asleep at all. Thus, you can have a total of 35 = 243 different outcomes.

If you had more bottles than 243, there would be no way to distinguish between them. The fact that you have 240 bottles might mean that 243 will work too, but apparently the designer of the puzzle didn’t want to hint into powers of three and picked the largest round number below 243. These considerations should increase your willingness to look into this problem base 3.

Let us label the bottles with different 5-character strings containing three characters 0, 1, and 2. Now we can use the label as instructions. The first character will be associated with the first intern and so on. Suppose the fourth character on the bottle’s label is 0, then the fourth intern doesn’t need to struggle with digesting a pill from this particular bottle. If the fourth character is 1, then the fourth intern gets the pill in the first hour. If the fourth character is 2, the fourth intern gets the pill in the second hour.

Note this minor detail: Suppose the fourth character on a bottle is 2, but the fourth intern is asleep by the second hour. That means, the bottle doesn’t contain the medicine, and we can put it aside.

At the end of two hours you know who fell asleep and when. This data will exactly match the label on the bottle with the medicine.

Share:Facebooktwitterredditpinterestlinkedinmail

Why I Quit Academia

Once I read a book in Russian that mentioned a study of the children of Soviet military personnel who had to move often. The conclusion was that frequent relocation is very damaging for children’s psyche. The children had to build new friendships, which they would lose the next time they had to move. After several moves they would stop making friends; later, as adults, they would be afraid of getting close to anyone.

In September 1996, my husband, my two children and I came to Princeton from Israel for my husband’s month-long visit to the Institute for Advanced Study. After the visit we were supposed to go back to Israel, but that didn’t happen. My husband returned alone and I stayed in Princeton with my children. That’s a long and sentimental story for another time.

Meanwhile, my older son Alexey started going to Princeton High School. By this time he had attended seven schools in three different countries. In light of the evidence presented in that book about the impact on children of moving, I felt very guilty. Alexey was entering 10th grade. Moving him again not only would further damage his ability to make friends, but would also screw up his college chances. He needed a stable environment leading up to college. For example, recommendation letters are better written by people who are involved with kids for several years. I was afraid to mess up his future. I promised myself not to move him again during high school, especially as Princeton High School was one of the best public schools in New Jersey.

At the same time, I got a Visiting Scholar position at Princeton University. Although it didn’t pay me any salary, through that position I received university housing, library privileges and an office. I was living on my personal savings and the monthly check my husband was sending me from Israel. My money was running out and I felt completely lost, like so many immigrants. I was new to Princeton; I didn’t have friends there; and I was struggling with English. On top of that, I had medical problems, not the least very low energy.

Ingrid Daubechies noticed me at the Princeton math department and approached me. After our conversation, she found some money for me to work on the Math Alive course she was designing. That work was a breath of fresh air. I enjoyed it tremendously, but the part-time salary was not enough. Then I received more help from Ingrid. She appreciated my work on Math Alive a lot, but realized that I needed a different solution. She sacrificed her own interests and started recommending me around. She arranged an interview for me at Telcordia, who offered me a job as a systems engineer.

The decision to accept this job was very painful, because I did not want to leave academia. However, considering that my priority was to keep Alexey in Princeton High School, I didn’t feel I had other options. I knew that I couldn’t stay much longer at Princeton University and I was aware that getting a University job often requires relocation.

Looking back, I think the reasons behind this decision were more complex than sacrificing my career for my child. If I had known more about social supports for poor families and about other possible research jobs, or if I had been more confident in my research abilities, I might not have left academics.

Alexey triumphed at Princeton High School. The school allowed him to take math courses at Princeton University. He took several, including the course in logic by John Conway and two courses in graph theory by Paul Seymour. Alexey’s multi-variable calculus professor complained to me that she couldn’t fit her grades into the required curve. If she gave Alexey 100%, the others would have to get less than 20. Luckily, it turned out that because her class was small, she didn’t need to bother about making a curve. After three years in Princeton High School, Alexey secured an impressive resume and great recommendation letters and went to MIT to pursue a double major in mathematics and computer science.

Share:Facebooktwitterredditpinterestlinkedinmail

Cars That Run on Water

Alexey translated from a Russian joke site:

American scientists finally developed a car that runs on water. Unfortunately, at the moment it only runs on water from the Gulf of Mexico.

Share:Facebooktwitterredditpinterestlinkedinmail

My First Polymath Project

Background and Definitions

I’ve heard about many mathematicians running polymath projects through their blogs. I wasn’t planning to do that. It just happened. In this essay, I describe the collaborative effort that was made to solve the following problem that appeared in my blog on July 2009:

Baron Münchhausen has n identical-looking coins weighing 1, 2, …, n grams. The Baron’s guests know that he has this set of coins, but do not know which one is which. The Baron knows which coin is which and wants to demonstrate to his guests that he is right. He plans to conduct weighings on a balance scale, so that the guests will be convinced about the weight of every of coin. What is the smallest number of weighings that the Baron must do in order to reveal the weights?

The sequence a(n) of the minimal number of weighings is called the Baron Münchhausen’s omni-sequence to distinguish it from the Existential Baron’s sequence where he needs the smallest amount of weighings to prove the weight of one coin of his choosing.

In this essay I will describe efforts to calculate a(n). The contributors are: Max Alekseyev, Ilya Bogdanov, Maxim Kalenkov, Konstantin Knop, Joel Lewis and Alexey Radul.

Starting Examples: n = 1, n = 2 and n = 3

The sequence starts as a(1) = 0, because there is nothing to demonstrate. Next, a(2) = 1, since with only one weighing you can find which coin is lighter.

Next, a(3) = 2. Indeed you can’t prove all the coins in one weighing, but in the first weighing you can show that the 1-gram coin is lighter than the 2-gram coin. In the second weighing you can show that the 2-gram coin is lighter than the 3-gram coin. Thus, in two weighings you can establish an order of weights and prove the weight of all three coins.

n = 4 and the Tightness Conjecture

As you can see in the case of n = 3, you can compare coins in order and prove the weight of all the coins in n − 1 weighings. But this is not at all the optimal number. Let us see why a(4) = 2. In his first weighing the Baron can put the 1- and the 2-gram coins on the left pan of the balance and the 4-gram coin on the right pan. In the future, I will just describe that weighing as 1 + 2 < 4. This way everyone agrees that the coin on the right pan is 4 grams, and the coin that is left out is 3 grams. The only thing that is left to do is to compare the 1-gram and the 2-gram coins in the second weighing.

Later Konstantin Knop sent me a different solution for n=4. His solution provides an interesting example. While looking for solutions, people usually try to have an unbalanced weighing to be “tight”. That is, they make it so that the heavier cup is exactly 1 gram heavier than the lighter cup. If you are trying to prove one coin in one weighing, “tightness” is a requirement. But it is not necessary when you have several weighings. Here is the first weighing in Konstantin’s solution: 1 + 3 = 4; and his second second weighing is: 1 + 2 < 3 + 4. We see that the second weighing has a weight difference of four between pans.

n = 5 and n = 6

Next, a(5) = 2. We can have the first weighing the same as before: 1 + 2 < 4, and the second weighing: 1 + 4 = 5. The second weighing confirms that the heavy coin on the right pan in the first weighing can’t be the heaviest one, thus it has to be the 4-gram coin. After that you can see that every coin is identified.

Next, a(6) = 2. The first weighing, 1 + 2 + 3 = 6, divides all coins into three groups: {1,2,3}, {4,5} and {6}. We know to which group each coin belongs, but we do not know which coin in the group is which. The second weighing: 1 + 6 < 3 + 5, identifies every coin. Indeed, the only possibility for the left side to weigh less than the right side is when the smallest weighing coin from the first group and 6 are on the left, and the two largest weighing coins from the first two groups are on the right.

The Lower Bound and n = 10, n = 11

When I was writing my essay I suspected that n = 6 is the largest number for which a solution can be established in two weighings, but I didn’t have any proof. So I was embarrassed to show my solutions of three weighings n equals 7, 8 and 9.

On the other hand I published the solutions suggested by my son, Alexey Radul, for n = 10 and n = 11. In these cases the theoretical lower bound of log3(n) for a(n) is equal to 3, and finding solutions in three weighings was enough to establish the value of the sequence a(n) for n = 10 and n = 11.

So, a(10) = 3, and here are the weighings. The first weighing is 1 + 2 + 3 + 4 = 10. After this weighing, we can divide the coins into three groups {1,2,3,4}, {5,6,7,8,9} and {10}. The second weighing is 1 + 5 + 10 < 8 + 9. After the second weighing we can divide all coins into groups we know they belong to: {1}, {2,3,4}, {5}, {6,7}, {8,9} and {10}. The last weighing contains the lowest weighing coin from each non-single-coin group on the left and the largest weighing coin on the right, plus, in order to balance them, the coins whose weights we know. The last weighing is 2 + 6 + 8 + 5 = 4 + 7 + 9 + 1.

Similarly, a(11) = 3, and the weighings are: 1 + 2 + 3 + 4 < 11; 1 + 2 + 5 + 11 = 9 + 10; 6 + 9 + 1 + 3 = 8 + 4 + 2 + 5.

An Exhaustive Search and a Mystery Solution for n = 6

After publishing my blog I wrote a letter to the Sequence Fans mailing list asking them to expand the sequence. Max Alekseyev replied with the results of an exhaustive search program he wrote. First of all, he found a counter-intuitive solution for n=6. Namely, the following two weighings: 1 + 3 < 5 and 1 + 2+ 5 < 3 + 6. He also confirmed that it is not possible to identify the coins in two weighings for n=7, n=8 and n=9.

Many Interesting Examples for n = 7

So now I can stop being embarrassed and proudly present my solution for n=7 in three weighings. That is, a(7) = 3 and the first weighing is: 1+2+3 < 7, and it divides all the coins into three groups {1,2,3}, {4,5,6} and 7. The second weighing, 1 + 4 < 6, divides them even further. Now we know the identity of every coin except the group {2,3}, which we can disambiguate with the third weighing: 2 < 3.

In many solutions that I’ve seen, one of the weighings was very special: every coin on one cup was lighter than every coin on the other cup. I wondered if that was always the case. Konstantin Knop send me a counterexample for n=7. The first weighing is: 1 + 2 + 3 + 5 = 4 + 7. The second is: 1 + 2 + 4 < 3 + 5. The third is: 1 + 3 + 4 = 2 + 6.

Later Max Alekseyev sent me two more special solutions for n=7. The first one contains only equalities: 2 + 5 = 7; 1 + 2 + 4 = 7; 1 + 2 + 3 + 5 = 4 + 7. The second one contains only inequalities: 1 + 3 < 5; 1 + 2 + 5 < 3 + 6; 5 + 6 < 2 + 3 + 7.

n = 8

Moving to the next index, a(8) = 3 and the first weighing is: 1 + 2 + 3 + 4 + 5 < 7 + 8. The second weighing is: 1 + 2 + 5 < 4 + 6. After that we have identified all coins but two groups {1,2} and {3,4} that can be resolved by 2 + 4 = 6.

More Examples and a Paper

Meanwhile my blog received a comment from Konstantin Knop who claimed that he found solutions in three weighings for n in the range between 12 and 17 inclusive and four weighings for n = 53. I had already corresponded with Konstantin and knew that his claims are always well-founded, so I didn’t doubt that he had found the solutions.

Later I began to write a paper with Joel Lewis on the upper bound of the omni-sequence, where we prove that a(n) ≤ 2 ⌈log2n⌉. For this paper, we wanted a comprehensive set of examples, so I emailed Konstantin asking him to write up his solutions. He promptly sent me the results and mentioned that he had found the weighings together with Ilya Bogdanov. They used several different ideas in the solutions. First I’ll describe their solutions based on ideas we’ve already seen, namely to compare the lightest coins in the range to the heaviest coins.

n = 13 and n = 15

Here is the proof that a(13) = 3. The first weighing is: 1 + … + 8 = 11 + 12 + 13, and it identifies the groups {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10} and {11, 12, 13}. The second weighing is: (1 + 2 + 3) + 9 + (11 + 12) = (7 + 8) + 10 + 13, and it divides them further into groups {1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}, {11, 12}, {13}. And the last weighing identifies all the coins: 1 + 4 + 7 + 11 + 9 + 10 = 3 + 6 + 8 + 12 + 13.

Similarly, let us show that a(15) = 3. The first weighing is: 1 + … + 7 < 14 + 15, and it divides the coins into three groups {1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13}, and {14, 15}. The second weighing is: (1 + 2 + 3) + 8 + (14 + 15) = (5 + 6 + 7) + (12 + 13), and this divides them further into groups {1, 2, 3}, {4}, {5, 6, 7}, {8}, {9, 10, 11}, {12, 13} and {14, 15}. The third weighing identifies every coin: 1 + 5 + 8 + 9 + 12 + 14 = 3 + 7 + 11 + 13 + 15.

n = 9 and n = 12: Heaviest vs Lightest. Almost, but not Quite

As I mentioned earlier it is not always possible to find the first weighing which will nicely divide the coins into groups. We already discussed an example, n = 5, in which neither of the two weighings divided the coins into groups. Likewise, the same thing happened in the second mysterious solution for n = 6. What these solutions have in common is that the first weighing nearly divides everything nicely. The left pan is almost the set of the lightest coins and the right pan is almost the set of the heaviest coins. But not quite.

That is not our only situation in which the first weighing does not quite divide the coins into groups. For example, here is Konstantin’s solution for a(9) = 3. For the first weighing, we put five coins on the left pan and two coins on the right pan. The left pan is lighter. This could happen in three different ways:

  1. 1 + 2 + 3 + 4 + 5 < 8 + 9 (out 6 and 7)
  2. 1 + 2 + 3 + 4 + 5 < 7 + 9 (out 6 and 8)
  3. 1 + 2 + 3 + 4 + 6 < 8 + 9 (out 5 and 7)

The second weighing, 1 + 2 + 3 = 6, in which we took three coins from the left pan and balanced them against one coin – again from the left pan – could only happen in case “C.” After the two weighings, the following groups were identified: {1, 2, 3}, {4}, {5, 7}, {6}, {8, 9}. The third weighing, 1 + 4 + 5 + 8 < 3 + 7 + 9, identifies all the coins.

A similar technique is used in the solution that Konstantin sent to us to demonstrate that a(12) = 3. The first weighing is: 1 + 2 + 3 + 4 + 5 + 6 < 10 + 12. The audience which sees the results of the weighings understands that there are three possibilities for the distribution of coins:

  1. 1 + 2 + 3 + 4 + 5 + 6 < 10 + 12
  2. 1 + 2 + 3 + 4 + 5 + 6 < 11 + 12
  3. 1 + 2 + 3 + 4 + 5 + 7 < 11 + 12

The second weighing, (1 + 2 + 3) + (7 + 8) + 10 < (9 + 11 ) + 12, convinces the audience that the left pan must weigh at least 31 if the first weighing was case “A” above (31 = 1 + 2 + 3 + 7 + 8 + 10) or “C” (31 = 1 + 2 + 3 + 6 + 8 + 11), and at least 32 (32 = 1 + 2 + 3 + 7 + 8 + 11) if the first weighing was case “B.” At the same time the right pan is not more than 12 + 9 + 11 = 32 for case “A” above, not more than 12 + 9 + 10 = 31 for case “B” and not more than 12 + 9 + 10 = 31 for case “C.”

Hence the inequality in the second weighing is only possible when the first weighing was indeed as described by case “A” above. Consequently, the first two weighings together identify groups: {1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}, {11} and {12}. The third weighing, 1 + 4 + 7 + 11 + 12 < 3 + 6 + 8 + 9 + 10, identifies all the coins.

Rearrangement Inequality: n = 6, n = 14, n = 16, n = 17 and n = 53

Other cases that Konstantin Knop sent me used a completely different technique. I would like to explain this technique using the mysterious solution for n = 6 found by Max Alekseyev. Suppose we have six coins labeled c1, … c6. The first weighing is: c1 + c3 < c5. The second weighing is: c1 + c2 + c5 < c3 + c6.

Let us prove that these two weighings identify all the coins. Let us replace the two inequalities above with the following: c1 + c3c5 ≤ −1, and c1 + c2 + c5c3c6 ≤ −1. Now we multiply the first inequality by 3 and the second by 2 and sum the results. We get: 5c1 + 2c2 + c3 + 0c4c5 − 2c6 ≤ −5. Note that the coefficients for labels are in a decreasing order. By the rearrangement inequality the smallest value the expression 5c1 + 2c2 + c3 + 0c4c5 − 2c6 reaches is when the labels on the coins match the indices. This smallest value is −5. Hence, the labels have to match the coins.

The technique that Konstantin and his collaborators are using is to search for appropriate coefficients to multiply the weighings by, rather than searching for the weighings themselves. In lieu of lengthy explanations, I will just list the weighings that he uses together with coefficients to multiply them by for their proof that the weighings differentiate coins.

We will start with showing that a(14) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9 < 11 + 13 + 14, and: 1 + 2 + 3 + 8 + 11 + 13 = 7 + 9 + 10 + 12, followed by 1 + 4 + 7 + 10 = 3 + 6 + 13. The coefficients to multiply by are {9, 5, 2}.

Next we will show that a(16) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 6 + 8 < 14 + 16, and 1 + 2 + 3 + 7 + 9 + 14 = 8 + 13 + 15, followed by 1 + 4 + 7 + 10 + 13 < 3 + 6 + 12 + 15. The coefficients to multiply by are {11, 5, 2}.

Next we will show that a(17) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9 + 10 < 15 + 16 + 17, and 1 + 2 + 3 + 8 + 11 + 15 + 16 < 7 + 9 + 10 + 14 + 17, and 1 + 4 + 7 + 8 + 12 + 14 = 3 + 6 + 10 + 11 + 16. The coefficients to multiply by are {11, 5, 2}.

Next we will show that a(53) = 4. The weighings are: (1 + 2 + … + 23) + 25 < 47 + (49 + … + 53), and (1 + … + 9) + 24 + (26+ … + 31) + 47 + (49 + … + 52) < (16 + … + 23) + 25 + (41 + … + 46) + 48 + (51 + 52), and (1 + 2 + 3) + (10 + 11) + (16 + 17 + 18) + 24 + (26 + 27) + (32 + 33 + 34) + (41 + 42 + 43) + 47 + 49 + 53 =(7 + 8 + 9) + 15 + (22 + 23) + 25 + (30 + 31) + (38 + 39) + 40 + (45 + 46) + 48 + (51 + 52), and the last one 1 + 4 + 7 + 10 + 12 + 16 + 19 + 22 + 24 + 28 + 30 + 32 + 35 + 38 + 41 + 45 + 47 + 51 + 53 < 3 + 6 + 9 + 11 + 14 + 18 + 21 + 25 + 27 + 29 + 34 + 37 + 40 + 43 + 48 + 49 + 50 + 52. The coefficients to multiply by are {43, 15, 5, 2}.

The Search Continues for n = 18 and n = 19

When I was working on the paper with Joel Lewis I re-established my email discussions about the Baron’s onmi-sequence with Konstantin Knop. At that time Konstantin’s colleague, Maxim Kalenkov, got interested in the subject and wrote a computer search program to find other solutions that can be proven with the rearrangement inequality. Thus, we know two more terms of this sequence.

The next known term is a(18) = 3. The weighings are: 1 + 2 + 4 + 5 + 7 + 10 + 12 = 9 + 15 + 17, and 1 + 3 + 4 + 6 + 9 + 11 + 17 = 7 + 12 + 14 + 18, and 2 + 3 + 7 + 8 + 9 + 14 + 15 = 4 + 10 + 11 + 16 + 17. The corresponding coefficients are: {8, 7, 5}.

Similarly, a(19) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 7 + 8 + 10 + 13 = 16 + 18 + 19, and 1 + 2 + 3 + 6 + 9 + 11 + 16 = 8 + 10 + 13 + 17, and 1 + 4 + 6 + 8 + 12 + 18 = 3 + 7 + 11 + 13 + 15. The coefficients are {12, 7, 3}.

Solutions in Four Weighing for n from 20 to 58

Maxim Kalenkov continued his search. He didn’t find any new solutions in three weighings, but he found a lot of solutions in four weighings, namely for numbers from 20 to 58. Below are his solutions, with multiplier coefficients in front of every weighing:

a(20) ≤ 4
18: 1+2+3+4+5+10+14+16+18 = 6+7+11+12+17+20
19: 1+2+4+5+12+15+17+19 < 6+8+10+14+18+20
21: 2+6+11+17+18 = 4+9+10+15+16
26: 1+6+7+8+9+10+20 = 2+5+17+18+19

a(21) ≤ 4
18: 3+5+6+11+15+17+19 = 7+8+9+13+18+21
19: 4+6+9+13+16+18+20 = 1+7+11+12+15+19+21
21: 1+4+5+7+12+18+19 = 3+9+10+11+16+17
26: 1+2+3+7+8+9+10+11+21 = 4+5+6+18+19+20

a(22) ≤ 4
18: 3+5+6+12+15+17+20 = 7+8+10+13+18+22
19: 1+2+4+10+13+16+18+21 = 7+9+12+15+20+22
21: 1+6+7+18+19+20 = 2+3+10+11+12+16+17
26: 2+3+7+8+9+10+11+12+22 = 6+18+19+20+21

a(22) ≤ 4
18: 1+2+5+6+12+16+18+22 < 3+7+8+10+13+19+23
19: 1+3+4+6+10+17+19+21 = 7+9+12+14+16+23
21: 3+7+13+14+19+20 = 2+6+10+11+12+17+18
26: 2+7+8+9+10+11+12+23 = 19+20+21+22

a(24) ≤ 4
18: 1+3+6+12+17+19+21+23 < 2+4+7+8+10+13+15+20+24
19: 1+2+4+5+6+10+15+18+20+22 < 7+9+12+14+17+21+24
21: 4+7+13+14+20+21 = 3+6+10+11+12+18+19
26: 2+3+7+8+9+10+11+12+24 = 20+21+22+23

a(25) ≤ 4
18: 1+2+3+5+6+8+9+14+17+19+22 < 10+12+16+20+24+25
19: 2+6+7+9+12+16+18+20+23 = 10+11+14+15+17+22+24
21: 1+2+4+7+8+10+15+20+21+22 = 3+6+12+13+14+18+19+25
26: 3+10+11+12+13+14+24+25 = 2+7+8+9+20+21+22+23

a(26) ≤ 4
18: 1+2+3+5+6+8+9+14+18+20+23 = 10+12+15+21+25+26
19: 2+3+4+6+7+9+12+19+21+24 = 11+14+16+18+23+25
21: 7+8+15+16+21+22+23 = 2+6+12+13+14+19+20+26
26: 1+2+10+11+12+13+14+25+26 = 7+8+9+21+22+23+24

a(27) ≤ 4
18: 1+3+4+6+7+8+9+14+19+21+23+25 < 10+11+13+15+17+22+26+27
19: 1+2+3+5+7+9+13+17+20+22+24 < 4+10+12+14+16+19+23+26
21: 2+3+4+8+10+15+16+22+23 = 1+7+13+14+20+21+27
26: 1+10+11+12+13+14+26+27 = 3+8+9+22+23+24+25

a(28) = 4
18: 3+6+8+9+10+15+19+21+24+26 = 1+5+11+13+16+18+22+27+28
19: 1+4+5+7+9+10+13+18+20+22+25 = 3+6+11+12+15+17+19+24+27
21: 5+6+11+16+17+22+23+24 = 4+9+13+14+15+20+21+28
26: 1+2+3+4+11+12+13+14+15+27+28 = 10+22+23+24+25+26

a(29) = 4
18: 1+3+5+6+7+9+10+16+20+22+25+27 < 11+12+14+17+18+23+28+29
19: 4+8+10+14+18+21+23+26 = 2+3+6+11+13+16+20+25+28
21: 1+2+6+8+9+11+17+23+24+25 = 4+5+14+15+16+21+22+29
26: 2+3+4+5+11+12+13+14+15+16+28+29 = 8+9+10+23+24+25+26+27

a(30) = 4
18: 2+8+10+16+21+23+26+27+28 = 5+11+12+14+17+19+24+29+30
19: 2+4+5+7+9+14+19+22+24+28 = 11+13+16+18+21+26+29
21: 1+5+6+9+10+11+17+18+24+25+26 = 4+14+15+16+22+23+28+30
26: 1+3+4+11+12+13+14+15+16+29+30 < 9+10+24+25+26+27+28

a(31) = 4
18: 1+2+6+9+10+16+21+23+26+28+29 < 3+4+7+11+12+14+17+19+24+30+31
19: 1+2+4+7+14+19+22+24+27+29 < 6+9+11+13+16+18+21+26+30
21: 2+3+7+8+9+11+17+18+24+25+26 = 14+15+16+22+23+29+31
26: 1+3+4+5+6+11+12+13+14+15+16+30+31 = 2+24+25+26+27+28+29

a(32) = 4
18: 1+5+8+9+10+12+13+22+24+27+29 = 6+14+16+18+20+25+30+31
19: 4+6+10+11+13+16+20+23+25+28 = 1+2+8+15+19+22+27+30+32
21: 1+2+6+7+8+11+12+18+19+25+26+27 = 4+5+10+16+17+23+24+31+32
26: 1+2+3+4+5+14+15+16+17+30+31+32 < 11+12+13+25+26+27+28+29

a(33) = 4
18: 1+2+6+7+8+9+10+12+13+23+27+29+30 = 3+14+15+17+19+21+25+31+32
19: 1+2+10+11+13+17+21+24+25+28+30 = 4+6+8+14+16+20+23+27+31+33
21: 1+3+4+8+11+12+14+19+20+25+26+27 < 7+10+17+18+24+30+32+33
26: 3+4+5+6+7+14+15+16+17+18+31+32+33 = 11+12+13+25+26+27+28+29+30

a(34) = 4
18: 2+3+4+8+10+12+13+19+24+28+30+31 < 6+14+15+17+20+22+26+32+33
19: 1+2+3+5+6+9+11+13+17+22+25+26+29+31 = 4+8+14+16+19+21+24+28+32+34
21: 1+3+6+7+8+11+12+14+20+21+26+27+28 = 2+5+17+18+19+25+31+33+34
26: 1+2+4+5+14+15+16+17+18+19+32+33+34 = 3+11+12+13+26+27+28+29+30+31

a(35) = 4
18: 1+3+4+6+8+10+11+13+19+24+26+29+31+32 = 14+15+17+20+22+27+33+34+35
19: 1+4+7+9+11+12+17+22+25+27+30+32 = 6+14+16+19+21+24+29+33+35
21: 2+12+13+14+20+21+27+28+29+35 = 4+7+8+11+17+18+19+25+26+32+34
26: 1+2+3+4+5+6+7+8+14+15+16+17+18+19+33+34 = 12+13+27+28+29+30+31+32

a(36) = 4
18: 1+2+3+4+5+9+11+12+14+15+20+25+29+31+32 < 6+16+18+21+23+27+33+34+36
19: 1+2+4+5+6+8+10+12+13+15+18+23+26+27+30+32 < 16+17+20+22+25+29+33+35+36
21: 1+3+5+13+14+16+21+22+27+28+29+36 = 2+8+9+12+18+19+20+26+32+34+35
26: 2+6+7+8+9+16+17+18+19+20+33+34+35 = 5+13+14+15+27+28+29+30+31+32

a(37) = 4
18: 1+2+3+6+8+10+12+13+15+16+21+27+30+32+33 = 4+9+17+19+22+24+28+34+35+37
19: 1+2+3+7+9+11+13+14+16+19+24+26+28+31+33 = 5+6+10+17+18+21+23+30+34+36+37
21: 3+4+5+9+10+14+15+17+22+23+28+29+30+37 = 1+7+8+13+19+20+21+26+27+33+35+36
26: 1+4+5+6+7+8+17+18+19+20+21+34+35+36 = 3+14+15+16+28+29+30+31+32+33

a(38) = 4
18: 2+3+4+7+9+11+13+15+16+21+26+28+31+33+34 = 5+10+17+18+19+22+24+29+35+36+38
19: 1+3+4+8+10+12+13+14+16+19+24+27+29+32+34 = 7+11+17+21+23+26+31+35+37+38
21: 1+2+4+5+10+11+14+15+17+22+23+29+30+31+38 = 8+9+13+19+20+21+27+28+34+36+37
26: 5+6+7+8+9+17+18+19+20+21+35+36+37 = 4+14+15+16+29+30+31+32+33+34

a(39) = 4
18: 1+2+4+7+9+11+13+14+16+22+27+29+32+34+35 = 10+17+18+20+23+25+30+36+38+39
19: 2+3+4+8+10+12+14+15+20+25+28+30+33+35 = 5+7+11+17+19+22+24+27+32+37+38
21: 1+2+3+5+10+11+15+16+17+23+24+30+31+32+38 < 8+9+14+20+21+22+28+29+35+36+37
26: 1+5+6+7+8+9+17+18+19+20+21+22+36+37 = 15+16+30+31+32+33+34+35

a(40) = 4
18: 1+2+3+4+5+8+9+12+14+15+17+18+23+27+29+32+34+35 < 7+10+19+21+24+26+30+36+37+39+40
19: 1+3+4+5+7+10+13+15+16+18+21+26+28+30+33+35 < 6+8+12+20+23+25+27+32+36+38+39
21: 1+5+6+10+11+12+16+17+24+25+30+31+32+39 < 3+9+15+21+22+23+28+29+35+37+38
26: 2+3+6+7+8+9+19+20+21+22+23+36+37+38 = 5+16+17+18+30+31+32+33+34+35

a(41) = 4
18: 1+3+5+6+8+10+12+14+15+17+18+23+28+30+33+35+36 < 7+11+19+21+24+26+31+37+38+40+41
19: 1+2+4+5+6+7+9+11+13+15+16+18+21+26+29+31+34+36 = 8+12+19+20+23+25+28+33+37+39+40
21: 1+4+6+11+12+16+17+19+24+25+31+32+33+40 < 9+10+15+21+22+23+29+30+36+38+39
26: 2+3+7+8+9+10+19+20+21+22+23+37+38+39 = 6+16+17+18+31+32+33+34+35+36

a(42) = 4
18: 1+3+5+6+7+11+13+15+16+18+24+29+31+34+36+37 = 2+8+12+19+20+22+25+27+32+38+40+41
19: 1+2+4+6+7+10+12+14+16+17+18+22+27+30+32+35+37 = 3+13+19+21+24+26+29+34+39+40+42
21: 1+2+3+4+5+7+8+12+13+17+19+25+26+32+33+34+40 = 10+11+16+22+23+24+30+31+37+38+39
26: 2+3+8+9+10+11+19+20+21+22+23+24+38+39 = 7+17+18+32+33+34+35+36+37

a(43) = 4
18: 1+2+5+6+7+10+12+14+16+17+19+20+29+31+34+36+37 = 8+21+23+25+27+32+38+39+41+42
19: 2+4+5+6+7+8+11+15+17+18+20+23+27+30+32+35+37 = 10+14+22+26+29+34+38+40+41+43
21: 1+2+3+7+13+14+18+19+25+26+32+33+34+41 < 5+11+12+17+23+24+30+31+37+39+40
26: 1+3+4+5+8+9+10+11+12+21+22+23+24+38+39+40 < 7+18+19+20+32+33+34+35+36+37

a(44) = 4
18: 1+2+5+6+7+8+10+11+14+16+17+19+20+25+30+32+35+37+38 = 3+12+21+22+23+26+28+33+39+40+42+44
19: 1+2+3+7+8+12+15+17+18+20+23+28+31+33+36+38+44 = 9+10+14+21+25+27+30+35+39+41+42+43
21: 2+3+4+6+8+9+12+13+14+18+19+21+26+27+33+34+35+42 = 11+17+23+24+25+31+32+38+40+41+44
26: 1+3+4+5+9+10+11+21+22+23+24+25+39+40+41 = 8+18+19+20+33+34+35+36+37+38

a(45) = 4
18: 2+4+5+6+11+13+16+17+18+20+21+26+31+33+36+38+39 = 7+9+14+22+24+27+29+34+40+42+43+45
19: 1+2+4+6+9+12+14+18+19+21+24+29+32+34+37+39+45 = 8+11+16+23+26+28+31+36+40+41+42+44
21: 1+2+3+5+7+8+14+15+16+19+20+27+28+34+35+36+42 = 4+12+13+18+24+25+26+32+33+39+41+45
26: 1+3+4+7+8+9+10+11+12+13+22+23+24+25+26+40+41 = 19+20+21+34+35+36+37+38+39

a(46) = 4
18: 1+2+3+5+6+8+9+14+16+17+19+21+22+26+31+33+36+38+39 = 10+12+23+27+29+34+40+41+42+43+45
19: 2+4+6+7+8+9+12+15+18+20+22+29+32+34+37+39+45 = 3+11+14+17+23+24+26+28+31+36+40+42+44
21: 1+3+7+9+10+11+17+20+21+23+27+28+34+35+36+42 = 6+15+16+25+26+32+33+39+41+45+46
26: 1+2+3+4+5+6+10+11+12+13+14+15+16+23+24+25+26+40+41 = 9+20+21+22+34+35+36+37+38+39

a(47) = 4
18: 2+3+5+7+8+9+13+14+16+18+19+21+22+27+32+34+37+39+40 < 11+23+24+28+30+35+41+42+43+44+46
19: 1+3+6+7+8+9+11+17+19+20+22+30+33+35+38+40+46 < 5+10+13+16+23+25+27+29+32+37+41+43+45
21: 1+2+4+5+9+10+15+16+20+21+23+28+29+35+36+37+43 < 7+14+19+26+27+33+34+40+42+46+47
26: 1+2+3+4+5+6+7+10+11+12+13+14+23+24+25+26+27+41+42 < 9+20+21+22+35+36+37+38+39+40

a(48) = 4
18: 3+5+6+7+8+13+17+19+20+22+23+28+33+35+38+40+41 < 9+11+15+24+26+29+31+36+42+44+45+47
19: 1+4+6+8+11+14+15+18+20+21+23+26+31+34+36+39+41+47 < 3+10+13+17+24+25+28+30+33+38+42+43+44+46
21: 1+2+3+7+8+9+10+15+16+17+21+22+24+29+30+36+37+38+44 = 6+14+20+26+27+28+34+35+41+43+47+48
26: 1+2+3+4+5+6+9+10+11+12+13+14+24+25+26+27+28+42+43 = 8+21+22+23+36+37+38+39+40+41

a(49) = 4
18: 2+3+6+7+8+9+10+15+18+20+21+23+24+29+34+38+40+41+49 < 12+16+25+26+30+32+36+42+43+44+45+47
19: 1+3+5+7+9+10+12+14+16+19+21+22+24+32+35+36+39+41+47 < 11+18+25+27+29+31+34+38+42+44+46+49
21: 1+2+3+4+8+10+11+16+17+18+22+23+25+30+31+36+37+38+44 < 7+14+15+21+28+29+35+41+43+47+48+49
26: 1+2+4+5+6+7+11+12+13+14+15+25+26+27+28+29+42+43 = 10+22+23+24+36+37+38+39+40+41

a(50) = 4
18: 1+2+3+4+6+7+9+10+11+15+16+19+20+21+23+24+34+36+39+41+42+50 = 12+17+25+26+28+30+32+37+43+44+45+46+48
19: 2+3+5+7+8+10+11+17+21+22+24+28+32+35+37+40+42+48 = 4+13+15+19+25+27+31+34+39+43+45+47+50
21: 1+3+4+8+9+11+12+13+17+18+19+22+23+25+30+31+37+38+39+45 = 7+16+21+28+29+35+36+42+44+48+49+50
26: 1+2+4+5+6+7+12+13+14+15+16+25+26+27+28+29+43+44 = 11+22+23+24+37+38+39+40+41+42

a(51) = 4
18: 2+3+4+6+8+10+11+15+17+19+20+21+23+24+30+35+37+40+42+43+50 < 12+13+18+25+26+28+31+33+38+44+46+47+49+51
19: 1+3+4+7+9+11+13+16+18+21+22+24+28+33+36+38+41+43+49 < 6+15+19+25+27+30+32+35+40+45+46+48+50
21: 1+2+4+5+6+9+10+11+12+18+19+22+23+25+31+32+38+39+40+46+51 < 16+17+21+28+29+30+36+37+43+44+45+49+50
26: 1+2+3+5+6+7+8+12+13+14+15+16+17+25+26+27+28+29+30+44+45 < 11+22+23+24+38+39+40+41+42+43+51

a(52) = 4
18: 2+5+7+8+10+11+12+17+19+22+25+26+31+35+37+40+42+43+51 = 3+13+15+20+27+28+29+32+38+44+46+47+49+52
19: 1+2+3+6+8+9+11+12+15+18+20+23+24+26+29+36+38+41+43+49 = 5+14+17+22+27+31+33+35+40+45+46+48+51
21: 1+3+4+5+9+10+12+13+14+20+21+22+24+25+27+32+33+38+39+40+46+52 = 8+18+19+29+30+31+36+37+43+44+45+49+50+51
26: 1+2+3+4+5+6+7+8+13+14+15+16+17+18+19+27+28+29+30+31+44+45 = 12+24+25+26+38+39+40+41+42+43+52

a(53) = 4
18: 2+3+4+7+8+9+10+11+12+17+19+21+23+25+26+31+36+38+41+43+44+52 < 5+13+15+27+29+32+34+39+45+46+47+48+50+53
19: 1+3+4+5+9+11+12+15+18+22+23+24+26+29+34+37+39+42+44+50 = 7+14+17+21+27+28+31+33+36+41+45+47+49+52
21: 1+2+4+5+6+7+10+12+13+14+20+21+24+25+27+32+33+39+40+41+47+53 < 9+18+19+23+29+30+31+37+38+44+46+50+51+52
26: 1+2+3+5+6+7+8+9+13+14+15+16+17+18+19+27+28+29+30+31+45+46 = 12+24+25+26+39+40+41+42+43+44+53

a(54) = 4
18: 2+3+4+6+8+9+11+12+13+18+20+23+25+26+28+29+33+37+39+41+42+43+51 = 5+14+16+21+30+31+32+35+44+45+47+48+49+52+54
19: 1+3+4+5+7+9+10+12+13+16+19+21+24+26+27+29+32+35+38+43+49+54 < 6+15+18+23+30+33+34+37+41+44+46+47+51+53
21: 1+2+4+5+6+10+11+13+14+15+21+22+23+27+28+30+34+40+41+47+52+53 < 9+19+20+26+32+33+38+39+43+45+46+49+50+51
26: 1+2+3+5+6+7+8+9+14+15+16+17+18+19+20+30+31+32+33+44+45+46 < 13+27+28+29+40+41+42+43+52+53+54

a(55) = 4
18: 2+3+6+8+9+11+12+13+18+19+22+24+25+27+28+32+37+39+42+44+45+54 < 4+14+16+20+29+31+33+35+40+46+47+49+50+52+55
19: 1+2+3+4+7+9+10+12+13+16+20+23+25+26+28+31+35+38+40+43+45+52 < 6+15+18+22+30+32+34+37+42+46+48+49+51+54
21: 1+3+4+5+6+10+11+13+14+15+20+21+22+26+27+33+34+40+41+42+49+55 = 9+19+25+31+32+38+39+45+47+48+52+53+54
26: 1+2+4+5+6+7+8+9+14+15+16+17+18+19+29+30+31+32+46+47+48 = 13+26+27+28+40+41+42+43+44+45+55

a(56) = 4
18: 2+3+4+7+9+10+12+13+14+18+20+23+25+26+28+34+39+41+44+46+47+55 < 5+15+16+21+29+30+32+35+37+42+48+50+52+53+56
19: 1+3+4+5+8+10+11+13+14+16+19+21+24+26+27+28+32+37+40+42+45+47+52 < 7+18+23+29+31+34+36+39+44+49+51+54+55+56
21: 1+2+4+5+6+7+11+12+14+15+21+22+23+27+29+35+36+42+43+44+53+54 < 10+19+20+26+32+33+34+40+41+47+48+49+52+56
26: 1+2+3+5+6+7+8+9+10+15+16+17+18+19+20+29+30+31+32+33+34+48+49+56 = 14+27+28+42+43+44+45+46+47+53+54+55

a(57) = 4
18: 2+3+4+7+9+10+12+14+18+19+22+24+27+32+35+36+39+43+45+49+51 < 5+13+16+21+26+28+31+34+38+41+42+48+50+53+56
21: 1+3+4+5+8+10+11+14+16+18+20+21+25+29+31+35+38+40+41+46+51+53+57 < 7+15+19+24+26+30+36+37+39+42+45+47+48+52+55+56
25: 1+2+4+5+6+7+11+12+13+15+18+21+23+24+26+29+32+34+37+41+44+45+48+55 = 10+20+22+31+33+36+40+43+47+51+53+54+56+57
33: 1+2+3+5+6+7+8+9+10+13+15+16+17+19+20+22+26+28+30+31+33+36+42+47+56 = 18+29+32+35+41+44+45+46+49+51+55+57

a(58) = 4
17: 2+3+4+8+9+10+12+13+14+21+22+25+26+27+29+30+37+42+43+45+46+47+56 < 5+15+16+20+31+32+33+35+36+41+48+49+51+52+53+55
20: 1+3+4+5+7+10+11+13+14+16+19+20+24+27+28+30+33+36+40+41+44+47+53 = 8+17+21+25+31+37+38+42+45+48+50+51+56+57
21: 1+2+4+5+6+8+11+12+14+15+17+20+23+25+28+29+31+35+38+41+45+51+55+57 < 10+19+22+27+33+34+37+40+43+47+49+50+53+54+56
26: 1+2+3+5+6+7+8+9+10+15+16+17+18+19+21+22+31+32+33+34+37+48+49+50 < 14+28+29+30+41+44+45+46+47+55+57+58

Share:Facebooktwitterredditpinterestlinkedinmail

George Hart

George HartYou might ask why this piece is titled George Hart, when the only man in the photo on the left is John Conway. George Hart is related to this picture in three different ways.

First, this picture is of the math department common room at Princeton University. It was taken during a joint event of the WaM and SWIM programs in June, 2009. It shows the Zometool workshop conducted by George Hart that resulted in the construction of the expanded 120-cell, which appears in the photo’s foreground.

The second connection to George Hart is that beautiful shiny object under the lights on the far left. The object is the propello-octahedron sculpture that George Hart created out of 150 CDs. The sculpture has been in the common room for many years, and I have always loved it.

Unfortunately, the sculpture was slowly degrading, even losing some of its parts. I visited Princeton in August 2008 and realized that the sculpture was facing a short life expectancy, so I took the picture of it that is below. I couldn’t find any angle to shoot the photo that hid the lost pieces. The sculpture survived until my visit in June 2009, as evidenced by the first picture. But unfortunately it wasn’t there any more during my last visit in May 2010.

George Hart's sculpture

Oops, I almost forgot. I promised you a third way in which George Hart relates to the first picture. He is the one who took it.

Share:Facebooktwitterredditpinterestlinkedinmail

Scary Coins

My coauthor Konstantin Knop publishes cute math problems in his blog (in Russian). Recently he posted a coin weighing problem that was given at the 2010 Euler math Olympiad in Russia to eighth graders. The author of the problem is Alexander Shapovalov.

Among 100 coins exactly 4 are fake. All genuine coins weigh the same; all fake coins, too. A fake coin is lighter than a genuine coin. How would we find at least one genuine coin using two weighings on a balance scale?

It is conceivable that your two weighings may find more than one genuine coin. The more difficult question that Konstantin and his commentators discuss is the maximum number of genuine coins you can guarantee to identify in two weighings. Konstantin and the others propose 14 as the answer, but do not have a proof yet.

I wonder if one of you can find a bigger number than Konstantin or alternatively a proof that indeed 14 is the largest possible.

You might ask, considering the title of this piece, why I think that coins are scary. No, I am not afraid of coins. It scares me that this problem was given to eighth graders in Russia, because I cannot imagine that it would be given to kids that age in the USA.

By the way, ten eighth grade students in Russia solved this problem during the competition.

Share:Facebooktwitterredditpinterestlinkedinmail