Archive for April 2022

Retouched Picture of John Conway

One of my posts about John Conway has a picture I took of him in 2015, leafing through a book about himself, Genius at Play. I allowed Wikipedia to use this image, and they did. They also retouched it for their article on John Conway in Dutch. I like the result.

Genius at Play
Genius at Play

Share:Facebooktwitterredditpinterestlinkedinmail

Best of the 2022 MIT Mystery Hunt

Every year, after the MIT Mystery Hunt was over, I would go through all the puzzles and pick out the ones related to mathematics. This year, I didn’t feel like doing it. Besides, I think it is more important to collect quality puzzles rather than all the puzzles by topic. So my new collection is the puzzles recommended to me, which I might like.

I start with math and logic puzzles.

I continue with computer science.

I carry on with some non-math fun.

I conclude with the plot device round. All the puzzles in this round are relatively easy. But our team got stuck on them until we realized that we already had the answer, which was not a single word. Here are some of the puzzles that were specifically recommended.


Share:Facebooktwitterredditpinterestlinkedinmail

Crocheting Away My Pain

Putin became the 21st century Hitler. I call him Putler.

I am an American. However, I was born in Moscow and lived my youth in the Soviet Union. I speak Russian, and I have friends in both Russia and Ukraine. The war in Ukraine is the biggest tragedy of my life. When Putler invaded Ukraine, I didn’t know what to do. I wanted to pick up a rifle and go to Ukraine to fight, but then I remembered my CPAP machine and the distilled water it needs, and I didn’t go. Instead, I ended up watching the news non-stop. Then I started sending money to different organizations supporting Ukraine.

However, I am a mathematician, so I tried to figure out whether I could help Ukraine by doing math. At first, I posted math problems from Ukraine Olympiads. Then I started discussing what we could do with my PRIMES colleges. The result was a new program, Yulia’s Dream, in honor of Yulia Zdanovska, a 21-year-old brilliant young Ukrainian mathematician killed by a Russian-fired missile. Yulia’s Dream is a free enrichment program for high-school students from Ukraine who love math.

All these activities didn’t help me with the pain. So I started crocheting. I bought yarn in the colors of the Ukrainian flag and crocheted a hyperbolic surface of constant curvature. The first picture shows the thingy from above. The second one is there for you to estimate its size: this is the biggest crocheting project I have ever finished.

Hyperbolic surface in colors of Ukrainian flag
Hyperbolic surface in colors of Ukrainian flag on my head

For a free Ukraine! Let democracies win over dictatorships!


Share:Facebooktwitterredditpinterestlinkedinmail

Arnold’s Advice

I wrote a lot about how during entrance tests for Moscow State University, the examiners were giving Jewish and other undesirable students special (e.g. more difficult) questions during the oral exams. (See, for example, our paper Jewish Problems with Alexey Radul.) Not all examiners agreed to do this. So the administration made sure that there were different exam rooms: brutal rooms with compliant examiners torturing students with difficult questions, and normal rooms with normal examiners testing preapproved students. The administration also had other methods. One of them is the topic of this essay.

The math department of Moscow State University had four entrance exams. The first was a written math test consisting of three trivial problems, a very difficult one, and a brutally challenging one. At the end, I will show you a sample: a trivial problem and a very difficult one from 1976, my entrance year.

What was the point of such vast variation in difficulty, you may ask? There were two reasons.

But first, let me explain some entrance rules. The exam was scored according to the number of solved problems. A score of two or less was a failing score. People with such scores would be disqualified from the next exam. Any applicant with a smidge of mathematical intelligence would be able to solve all three trivial problems. Almost all applicants who qualified for the next test would have the same score of three on the first test, as they wouldn’t be able to solve the last two problems. Thus, mathematical geniuses and people who barely made the cut got the same score.

There was another rule. Officially, people with a gold medal from their high school (roughly equivalent to a valedictorian) could be accepted immediately if they scored 5 on the first exam. So one of the administrative goals was to prevent anyone getting a 5, thus, blocking Jewish applicants from sneaking in after the first exam.

Another goal was to have all vaguely qualified people get the same score. The same goal applied to other exams. After the four admission exams, the passing score, say X, was announced. A few people with a score higher than X were immediately accepted. Then there were hundreds of applicants with a score of X, way more than the quota of people the department was planning to accept. An official rule allowed the math department to pick and choose whoever they wanted from everyone who scored X.

I heard a speech by the famous Russian mathematician, Vladimir Arnold, directed at decent examiners who tested “approved” students at the oral math exam, which was the second admissions exam. His suggestion was brilliant and simple. If the students are good and belong in the department, give them an excellent grade of 5. If not, give them a failing grade of 2. Arnold’s plan boosted the chances of good students doing better than the cutoff passing score X and removed mediocre students from the competition. His idea was not only brilliant and simple but also courageous: he was risking his career by trying to fight the system.

I never experienced the entrance exams firsthand. By ministry order, as a member of the USSR IMO team, I was accepted without taking any exams. I already wrote an essay, A Hole for Jews, about how getting on the IMO team was the only way for Jewish students to get into the Moscow State University, and how the University tried to block them.

But I still looked at the entrance exam problems I would have had to solve to get in. The last two problems scared me. Now I found them again online (in Russian) at: the 1976 entrance test. The trivial problem below is standard and mechanical, while the other problem still looks scary.

Trivial problem. Solve for x:

1976 Mekhmat Entrance Test

Solution. We were drilled in school to solve these types of problems, so this one was trivial. First, make a substitution: y = 3x. This leads to an equation: (2y – 1)(y – 3)/(y2 – 2)(y – 1) ≤ 0. From this we get ranges for y: (-∞, -√2], [1/2,1], [√2, 3]. The last step is to take a logarithm.

Very difficult problem. Three spheres are tangent to plane P and to each other. Two of the spheres are the same size. The apex of a circular cone is on P, and the cone’s axis is perpendicular to the plane P. All three spheres are outside the cone and tangent to it. Find the cosine of the angle between the cone’s generatrix and the plane P, if one of the angles of the triangle formed by the intersection points of the spheres and the cone is 150 degrees.


Share:Facebooktwitterredditpinterestlinkedinmail

Already or Have

I stumbled upon one of Smullyan’s puzzle on Facebook, in Russian. I couldn’t find the original text, so I just translated it back for my students.

Puzzle. You are on an island where only truth-tellers and liars live. The truth-tellers always tell the truth, and the liars always lie. You meet an islander who sits with you for a long time, then says, “I already said this sentence.” Is he a truth-teller or a liar?

I expected the following solution. If this islander is a truth-teller, then there should have been a time when he said, for the first time, “I already said this sentence.” But this would create a contradiction.

However, my students used this puzzle as an opportunity to teach me some intricacies of the English language. They explained to me the ambiguities of my translation. Here is a shortened and lightly edited quote from one of them:

There are two different linguistic opinions that give different answers to this problem. The first is that the truth of a statement is decided at the moment it starts to be delivered: in this case, when the islander starts saying his statement. With this interpretation, for the statement to be true, he had to have said the sentence before, and for that to be true, he had to have said it even before that, and this continues indefinitely. Clearly, he cannot have been alive forever, so he has to be a liar.
The other opinion is that the verity of a statement is decided at the exact conclusion of its deliverance. Then, when the islander finishes saying his sentence, its truth is judged, and he has at that same instant “already” said the sentence, so he is telling the truth. By this interpretation, the islander is a truth-teller.

Another student had a different brilliant idea. Depending on the islander’s intonation, it is possible that he says, “I already said ‘this sentence’.” In that case, there are no self-referencing sentences, and the islander could be either a truth-teller or a liar.

I consulted my best English consultant: my son, Alexey, and here is his reply. “The basic answer is that neither truth nor semantic meaning are absolute, and edge cases will be judged differently by different observers. A sentence whose truth is time-dependent on the same scale as the duration of uttering the sentence is clearly an edge case. That’s why mathematicians intentionally try to eliminate ambiguity from their communication.”

He suggested the following fix for the puzzle’s translation.

Fixed puzzle. You meet an islander who says, “I have said this sentence before.” Is he a truth-teller or a liar?

Alexey didn’t stop at fixes and suggested the following bonus puzzles.

Bonus puzzle 1. You meet an islander who says, “I will have said this sentence.” Is he a truth-teller or a liar?

Bonus puzzle 2. You meet an islander who says, “I will say this sentence again.” Is he a truth-teller or a liar?

Share:Facebooktwitterredditpinterestlinkedinmail

The 1978 Ukrainian Math Olympiad

Ukraine is on my mind. Here is a problem for 9-graders from the 1978 Ukrainian Math Olympiad:

Problem. Prove that for every natural number n, the following number is not an integer.

1978 Ukrainian Olympiad

Share:Facebooktwitterredditpinterestlinkedinmail