Archive for the ‘Puzzles’ Category.
23rd November 2011, 09:11 am
My co-author Konstantin Knop wrote a charming book, Weighings and Algorithms: from Puzzles to Problems. The book contains more than one hundred problems. Here are a couple of my favorites that I translated for you:
There is one gold medal, three silver medals and five bronze medals. It is known that one of the medals is fake and weighs less than the corresponding genuine one. Real medals made of the same metal weigh the same and from different metals do not. How can you use a balance scale to find the fake medal in two weighings?
There are 15 coins, out of which not more than seven are fake. All genuine coins weigh the same. Fake coins might not weigh the same, but they differ in weight from genuine coins. Can you find one genuine coin using a balance scale 14 times? Can you do it using fewer weighings?
You might get the impression that the latter problem depends on two parameters. Think about it: It is necessary that the majority of the coins are genuine in order to be able to solve the problem. In fact, the number of weighings depends on just one parameter: the total number of coins. Denote a(n) the optimal number of weighings needed to find a genuine coin out of n coins, where more than half of the coins are genuine. Can you calculate this sequence?
Hint. I can prove that a(n) ≤ A011371(n-1); that is, the optimal number of weighings doesn’t exceed n − 1 − (number of ones in the binary expansion of n−1).
Share:




19th November 2011, 05:26 pm
We all heard this paradoxical statement:
This statement is false.
Or a variation:
True or False: The correct answer to this question is ‘False’.
Recently we received a link to the following puzzle, which is similar to the statement above, but has a cute probabilistic twist:
If you choose an answer to this question at random, what is the chance you will be correct?
- 25%
- 50%
- 60%
- 25%
There are four answers, so you can choose a given answer with probability 25%. But oops, this answer appears twice. Is the correct answer 50%? No, it is not, because there is only one answer 50%. You can see that none of the answers are correct, hence, the answer to the question—the chance to be correct—is 0. Now is the time to introduce our new puzzle:
If you choose an answer to this question at random, what is the chance you will be correct?
- 25%
- 50%
- 0%
- 25%
Share:




17th November 2011, 04:28 pm
I found a new Russian Olympiad for high schools related to universities. I translated my favorite problems from last year’s final round. These are the math problems:
8th grade. In a certain family everyone likes their coffee with milk. At breakfast everyone had a full cup of coffee. Given that Alex consumed a quarter of all consumed milk and one sixth of all coffee, how many people are there in the family?
8th grade. How many negative roots does the equation x4 − 5x3 − 4x2 − 7x + 4 = 0 have?
10th grade. Find a real-valued function f(x) that satisfies the following inequalities for any real x and y: f(x) ≤ x and f(x+y) ≤ f(x) + f(y).
I liked the physics problems even more:
8th grade. Winnie-the-Pooh weighs 1 kg. He hangs in the air with density 1.2kg/m3 next to a bee hive. He is holding a rope connected to a balloon. Estimate the smallest possible diameter of the balloon, assuming that this happens on Earth.

10th grade. Two containers shaped like vertical cylinders are connected by a pipe underneath them. Their heights are the same and they are on the same level. The cross-sectional area of the right container is twice bigger than the left’s. The containers are partially filled with water of room temperature. Someone put ice into both containers: three times more ice into the right one than into the left one. After that, the containers are closed hermetically. How will the water level will change after the ice melts completely:
- The levels will not change.
- The level on the left will be higher than on the right.
- The level on the left will be lower than on the right.
- The answer depends on the initial volume of water in the containers.
Share:




11th November 2011, 04:56 pm
Once I talked to my friend Michael Plotkin about IQ tests, which we both do not like. Michael suggested that I run an experiment and send a standard IQ question for children to my highly-educated friends. So I sent a mass email asking:
What’s common between an apple and an orange?
I believe that the expected answer is that both are fruits.
Less than half of my friends would have passed the IQ test. They gave four types of answer. The largest group chose the expected answer.
The second group related the answer to language. For example, apples and oranges both start with a vowel and they both have the letters A and E in common.
The third group connected the answer to what was on their minds at the time:
- Apples and oranges are both healthy foods that I enjoy, but do not eat as often as I should.
- They have the same thing in common as do a saxophone and a guitar.
- You can’t shave with either one.
- They both are much worse than a cucumber in the bedroom.
And the last group were people who just tried to impress me:
- One should not decide that n apples is better than m oranges just because n > m.
- They both can provoke the discovery of gravity.
- You can’t compare apples and oranges.
- Existence.
- They both have fundamental meaning in food tongue.
- They’re topologically homeomorphic.
If my friends with high IQs have given so many different answers, I would expect children to do the same. The variety of answers is so big that no particular one should define IQ. By the way, my own well-educated kids’ answers are quoted above — and they didn’t go with the standard answer. I’m glad they never had IQ tests as children: I’m sure they would never have passed.
Share:




27th October 2011, 10:17 am
I am just wondering:
What is the largest integer consisting of distinct digits such that, in its English pronunciation, all the words start with the same letter?
I continue to wonder:
What is the largest integer consisting of the same digit such that, in its English pronunciation, all the words start with distinct letters?
Share:




10th October 2011, 11:41 am
I already gave an example of the kinds of problems that were given to Jewish people at the oral entrance exam to the math department of Moscow State University. In fact, I have a whole page with a collection of such problems, called Jewish problems or Coffins. That page was one of the first pages I created when I started my website more than ten years ago.
When my son Alexey was in high school, I asked him to help me type these problems into a file and to recover their solutions from my more than laconic notes, and solve the problems that I didn’t have notes for. He did the job, but the file was lying dormant on my computer. Recently I resurrected the file and we prepared some of the solutions for a publication.
The problems that were given during these exams were very different in flavor: some were intentionally ambiguous questions, some were just plain hard, some had impossible premises. In our joint paper “Jewish Problems” we presented problems with a special flavor. These are problems that have a short and “simple” solution, that is nonetheless very difficult to find. This way the math department of MSU was better protected from appeals and complaints.
Try the following problem from our paper:
Find all real functions of real variable F(x) such that for any x and y the following inequality holds: F(x) − F(y) ≤ (x − y)2.
I will give a talk on the subject for UMA at MIT on October 18, at 5pm.
Share:




9th October 2011, 09:34 am
What’s “plagiarism”? It’s when you take someone else’s work and claim it’s your own. It’s basically STEALING.
Ideas improve. The meaning of words participates in the improvement. Plagiarism is necessary. Progress implies it. It embraces an author’s phrase, makes use of his expressions, erases a false idea, and replaces it with the right idea.
Perhaps the Russians have done the right thing, after all, in abolishing copyright. It is well known that conscious and unconscious appropriation, borrowing, adapting, plagiarizing, and plain stealing are variously, and always have been, part and parcel of the process of artistic creation. The attempt to make sense out of copyright reaches its limit in folk song. For here is the illustration par excellence of the law of Plagiarism. The folk song is, by definition and, as far as we can tell, by reality, entirely a product of plagiarism.
If you copy from one author, it’s plagiarism. If you copy from two, it’s research.
Share:




2nd October 2011, 05:18 pm
You know that the negation of a true statement is a false statement, and the negation of a false statement is a true statement. You also know that you can negate a sentence by preceding it with “It is not true that ….”
Now look at the following statement and its negation, invented by David Bernstein. Which one is true?
- This sentence contains five words.
- It is not true that this sentence contains five words.
How about this pair?
- This sentence contains ten words.
- It is not true that this sentence contains ten words.
Share:




27th August 2011, 01:08 pm
Sleeping Beauty participates in the following experiment. On Sunday she is put to sleep, and a fair coin is flipped. Regardless of the result of the coin flip, she is awakened on Monday and is offered a bet. She may pay $550 in which case she will get $1000 if the coin was tails. If the coin was tails, she is put back to sleep with her memory erased, and awakened on Tuesday and given the same bet again. She knows the protocol. Should she take the bet?
As we discussed in our first essay about Sleeping Beauty, she should take the bet. Indeed, if the coin was heads her loss is $550. But if the coin was tails her gain is $900.
To tell you the truth, when Beauty is offered the bet, she dreams: “It would be nice to know the day of the week. If it were Tuesday, then the coin must have been tails and I would gladly take the winning bet.”
In our next variation of the riddle her dream comes true.
Every time she is awakened she is offered to buy the knowledge of the day of the week. How much should she be willing to pay to know the day of the week?
Share:




27th August 2011, 08:44 am