Archive for the ‘Math’ Category.

Fun with Latin Squares

Last year, our junior PRIMES STEP group studied Latin squares. We invented a lot of different types of Latin squares and wrote a paper about it, Fun with Latin Squares. Recall that a Latin square is an n by n table containing numbers 1 through n in every cell, so that every number occurs once in each row and column. In this post, I want to talk about anti-chiece Latin squares.

First, what’s a chiece? A chiece is a portmanteau word made out of two words, chess and piece, and, not surprisingly, it means a chess piece. Given a chiece, an anti-chiece Latin square is a Latin square such that any two cells, where our chiece can move from one cell to the other, according to the rules of chess, can’t contain the same number. Let’s see what this means.

Let’s start with rooks, which move along rows and columns. An anti-rook Latin square can’t have the same numbers repeating in any one row or column. Ha, anti-rook Latin squares are just Latin squares. Anti-bishop and anti-queen Latin squares can’t have the same numbers repeating on any diagonal.

Now, here is a picture of an anti-knight Latin square in which no two identical numbers are a knight’s move apart. This particular Latin square also forms a mini-Sudoku: not only does each row and column, but also each 2 by 2 corner region, contains all distinct numbers.

Anti-knight Sudoku

Consider all instances of some number, say 1, in an anti-chiece Latin square. If the board is n by n, we get n instances of non-attacking chieces. A famous math puzzle asks to place eight non-attacking queens on a standard chessboard. So the instances of any one particular number in an anti-queen Latin square solves the problem of placing n non-attacking queens on an n by n chessboard. Thus, building an anti-queen Latin square is more complicated than solving the non-attacking queens puzzle. The former requires filling the chessboard with n non-overlapping sets of non-attacking queens. The picture below gives an example of an anti-queen 5 by 5 Latin square.

Anti-queen Sudoku

This square has some interesting properties. It can be formed by cycling the first row. It also happens to be one of the chiece Latin squares we study in our paper. A chiece Latin square is a Latin square such that for each number in a cell, there is another cell, a chiece’s move apart, containing the same number. You can check that our anti-queen Latin square is at the same time a knight Latin square.

I wonder, can anyone build an anti-queen Latin square on the standard 8 by 8 chessboard?


Reversible Tetrahedra

Do you know what an isosceles tetrahedron is? I didn’t until recently. An isosceles tetrahedron has all of its faces congruent. Equivalently, all pairs of opposite edges are of equal length. Such tetrahedra are also called disphenoids. Here are some cute statements about them.

  • If the four faces of a tetrahedron all have the same perimeter, then the tetrahedron is a disphenoid.
  • If the four faces of a tetrahedron all have the same area, then the tetrahedron is a disphenoid.

Disphenoids have three nontrivial symmetries: 180-degree rotations around three lines connecting the midpoints of opposite edges.

Is it possible to have a tetrahedron with fewer symmetries than disphenoids? Yes, it is. Dan Klain just published a fascinating paper about such tetrahedra: Tetrahedra with Congruent Face Pairs. The results are so elegant and simple that I was surprised that they were new. I got curious and started to google aggressively. I found an official name for this kind of tetrahedron: phyllic disphenoid, but no theorems about them. Their name is quite unappealing: no wonder people didn’t want to study them much. Obviously, Dan wasn’t as aggressive at googling, so he didn’t find this official name and called them reversible tetrahedra. But my favorite name for them is the name Dan thought of but didn’t use in his paper: bi-isosceles tetrahedra.

Reversible Tetrahedron

Here is the picture of a bi-isosceles tetrahedron from Dan’s paper. It has two faces with sides a, b, and c, and two faces with sides a, b, and d. The edges of this tetrahedron are: a, a, b, b, c, and d. It has one nontrivial symmetry: a 180-degree rotation around the line connecting the midpoints of the unequal opposite edges c and d. The picture emphasizes this symmetry. The figure in the picture is a projection of a bi-isosceles tetrahedron onto a plane, such that the line of symmetry is projected onto the point of symmetry of the projection. The two cute statements above, about disphenoids, can be generalized to the case of bi-isosceles tetrahedra.

  • If the four faces of a tetrahedron can be split into two pairs with the same perimeter, then the tetrahedron is bi-isosceles.
  • If the four faces of a tetrahedron can be split into two pairs with the same area, then the tetrahedron is bi-isosceles.

The first property is trivial, while the second one is proven in Dan’s paper. Dan also shows how to calculate the volume of a bi-isosceles tetrahedron:

Reversible Tetrahedron Volume


Zipper Math

Zipper Surfaces

Each time I teach my students about the Möbius strip, I bring paper, scissors, and tape to class. The students make Möbius strips, and then I ask them to cut the strips in half along the midline and predict the result.

Then we move to advanced strips. To glue the Möbius strip, you need one turn of the paper. An interesting experiment is to glue strips with two, three, or more turns. In this case, too, it is fun to cut them along the midline and predict the shape of the resulting thingy. My class ends with a big paper mess.

As you might know, I am passionate about recycling. So I have always wanted to buy Möbius strips that can be cut in half and then put back together. I didn’t find them, so I made them myself from zippers. Now I can unzip them along the midline and zip them back together. I hope to have less mess in my future classes. We’ll see.


Borromean Rings

Borromean Rings

Here are my newly-made Borromean rings: two identical sets of them. They are an example of three linked rings, with any two of them not linked. The top set is positioned the way the Borromean rings are usually presented. You can see that any two rings are not linked by mentally ignoring the third one. For example, the red ring is on top of the green one, the green one is on top of the blue one, and the blue one is on top of the red one. They have a non-transitive ordering.

The bottom set of rings is arranged for a lazier thinker. Obviously, the blue and green rings are not linked.


The Stable Marriage Problem and Sudoku

As you may know, I run PRIMES STEP, a local program where we do mathematical research with students in grades 6-9. Last academic year, we looked at the stable marriage problem and discovered its connection to Sudoku. Our paper The Stable Matching Problem and Sudoku (written jointly with Matvey Borodin, Eric Chen, Aidan Duncan, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, Michael Voigt) is now available at the arxiv.

Consider 3 men and 3 women who want to be married to each other in heterosexual couples. They rank each other without ties. The resulting 6 permutations of numbers 1, 2, and 3 that describe the six rankings are called the preference profile of this group of people. A matching is unstable if two people would be happier to run away together than to marry into the assigned couples. The two potential runaways are called a rogue couple. A matching is called stable if no rogue couple exists. The Gale-Shapley algorithm, invented by Gale and Shapley, finds a stable matching for any preference profile, implying that stable matching is always possible.

We discovered that preference profiles form a natural bijection with ways to place one digit into a Sudoku grid. So we wrote a paper describing the stable marriage, rogue couples, the Gale-Shapley algorithm, soulmates, and such in terms of Sudoku.

Oops, I forgot to explain who the soulmates are. We invented this term to describe two people who rank each other first. Though it is possible to have several stable matchings for the same preference profile if the soulmates exist, they must always be matched together.

We also invented a new Sudoku type, which I will explain next time.


Number Gossip on Steroids

I’ve been too busy lately, so I stopped checking my Number Gossip website. Luckily, my website has fans. So one of them, Neil, notified me that my website was hijacked, and instead of describing properties of numbers, was selling steroids. I emailed Dreamhost, my hosting provider. They requested proof that I owned the domain. Why didn’t they request proof from the people selling steroids? Or were they selling steroids themselves?

I fixed my steroid issue and since I was thinking about it anyway, I decided to update Number Gossip. I ended up spending tons of time on it — I had ten years of emails with suggestions for new properties, and I went through all of them and added the interesting ones. For example, Joshua Gray emailed me a cute property of 1331 mentioned on Wikipedia: 1331 was said to be the only cube of the form x2 + x − 1. I didn’t see how to prove it, so I posted it as a question on mathoverflow. It turns out that 1331 is actually not the only cube of this form. There are three of them: −1 (for x = 0 or −1), 1 (for x = 1 or −2), and 1331 (for x = 36 or −37). So 1331 is the only non-trivial cube with this property. I had to fix Wikipedia. By the way, did you notice a symmetry? Plugging in x and −x − 1 into the quadratic produces the same value.

After processing all the emails related to Number Gossip, I got excited, so I continued working on it and added tons of new unique properties. Some of them I invented myself, some more were inspired by sequences in the OEIS database. I now have a collection of my new favorite unique properties, which I will post soon.


Penney’s Game and Groups

For the last year, I’ve been obsessed with Penney’s game. In this game, Alice picks a string of coin tosses, say HHH for three heads. After that, Bob picks his string of tosses of the same lengths, say HTH. Then they toss a fair coin. The person whose string shows up first wins. For example, if the tosses are THTTHHH, then Alice wins after the seventh toss. For these particular choices, Bob wins with probability 3/5.

With my PRIMES student, Sean Li, we looked at this game and asked a different question. Suppose Alice picks a pattern of three tosses in a row that are the same. Suppose after that, Bob chooses a pattern of three alternating tosses. Then they toss a fair coin. Alice is hoping for HHH or TTT, while Bob is hoping for HTH or THT. The person whose pattern shows up first wins. For example, if the tosses are THTTHHH, then Bob wins after the third toss. For these particular choices, Bob wins with probability 1/2.

In this example, what actually happens. We assume that the group of two elements acts on the alphabet of two letters. The group’s non-identity element swaps letters H and T. We assume that two strings are equivalent if they belong to the same equivalency class under the group action. We call such an equivalency class a pattern.

In the new game we invented, we have an alphabet of any size and any group acting on the alphabet. Then Alice and Bob pick their patterns. After that, they play the Penney’s game on these patterns. The answers to all the relevant questions are in our paper, The Penney’s Game with Group Action, posted at the math.CO arxiv 2009.06080.


Confirming the Labels of Coins in One Weighing

I wrote a paper Confirming the Labels of Coins in One Weighing together with my PRIMES STEP students Isha Agarwal, Paul Braverman, Patrick Chen, William Du, Kaylee Ji, Akhil Kammila, Shane Lee, Alicia Li, Anish Mudide, Jeffrey Shi, Maya Smith, and Isabel Tu. The paper is available at math.HO arxiv:2006.16797. Below my students describe what happens in the paper in their own words.

Tragedy has struck in an iCOINic land known as COINnecticut. One day, while everyone was minding their own business, the vault door of the bank was found to have been forcefully opened. COINcerns spread amongst the COINmoners that someone had tampered with their n sacred COINtainers of coins! The COINtainers are labeled with the integers 1 through n, which usually describe the weight of each of the countless coins inside that corresponding COINtainer. For example, the COINtainer labeled 1 should only COINtain coins that weigh 1 gram, the COINtainer labeled 2 should only COINtain coins that weigh 2 gram, and so on, you get the COINcept.

The acCOINtants COINclude that someone may have switched around the labels on the COINtainers. To resolve this COINplication, aka to check if the labels have been tampered with, they bought a balance scale for a microsCOINpic amount of money. However, they can only use the scale to COINduct one weighing as the angry COINmoners are impatient and wish to withdraw their money ASAP.

The COINfused acCOINtants COINvinced 11 COINspicuous students from Boston’s COINmunity to help them. With their COINbined efforts, they COINcluded that indeed, no matter how many COINtainers there are, their labels can be COINfirmed as correct or incorrect with just one weighing! Unfortunately, sometimes, such a weighing requires the use of many coins or coins with a large COINbined weight, which could potentially break the scale. Seeing this COINundrum, the students wished to be eCOINomical and find the least amount of coins or weight they need to place on the scale.

The acCOINtants and the 11 students COINtinued examining the nature of these weighings and discovered patterns that occur within them. They COINfined their research to special weighings they called downhill. They COINfirmed the effectiveness of such weighings to solve the problem at hand. The students estimated the weight and the number of coins, thus COINpleting their task.


The Blended Game

My PRIMES STEP students invented several variations of Penney’s game. We posted a paper about these new games at math.HO arxiv:2006.13002.

In Penney’s game, Alice selects a string of coin-flip outcomes of length n. Then Bob selects another string of outcomes of the same length. For example, Alice chooses HHT, and Bob chooses THH. Then a fair coin is tossed until Alice’s or Bob’s string appears. The player whose string appears first wins. In our example, Bob has a greater probability of winning, namely, 3/4. If the first two flips are HH, then Alice wins; otherwise, Bob wins.

The reader can check that HHT beats HTT with 2 to 1 odds. Thus, the game contains a non-transitive cycle it is famous for: THH beats HHT beats HTT beats TTH beats THH.

I already wrote about the No-Flippancy game that my students invented. It starts with Alice and Bob choosing different strings of tosses of the same length.

However, in the No-Flippancy game, they don’t flip a coin but select a flip outcome deterministically according to the following rule: Let in be the maximal length of a suffix in the sequence of “flips” that coincides with a prefix of the current player’s string. The player then selects the element of their string with index i + 1 as the next “flip.” Alice goes first, and whoever’s string appears first in the sequence of choices wins.

My favorite game among the invented games is the Blended game, which mixes the No-Flippancy game and Penney’s game.

In the game, they sometimes flip a coin and sometimes don’t. Alice and Bob choose their strings as in Penney’s game and the No-Flippancy game. Before each coin flip, they decide what they want by the rule of the No-Flippancy game above. If they want the same outcome, they get it without flipping a coin. If they want different outcomes, they flip a coin. Whoever’s string appears first in the sequence of `flips’ wins.

For example, suppose Alice selects HHT, and Bob selects THH. Then Alice wants H and Bob wants T, so they flip a coin. If the flip is T, then they both want Hs, and Bob wins. If the first flip is H, they want different things again. I leave it to the reader to see that Bob wins with probability 3/4. For this particular choice of strings, the odds are the same as in Penney’s game, but they are not always the same.

This game has a lot of interesting properties. For example, similar to Penney’s game, it has a non-transitive cycle of choices. Surprisingly, the cycle is of length 6: THH beats HHT beats THT beats HTT beats TTH beast HTH beat THH.


The No-Flippancy Game

My STEP students invented a coin-flipping game that doesn’t require a coin. It is called The No-Flippancy Game.

Alice and Bob choose distinct strings of length n consisting of the letters H (for heads) and T (for tails). The two players alternate selecting the outcome of the next “flip” to add to the sequence by the rule below.

The “flip” rule: Let i < n be the maximal length of a suffix of the sequence of chosen outcomes that coincides with a prefix of the current player’s string. The player then selects the element of their string with index i + 1 as the next term in the sequence.

Alice goes first, and whoever’s string appears first in the sequence of choices wins. In layman terms, the game rules mean that the players are not strategizing, but rather greedily finishing their strings.

Suppose n = 2 and Alice chose HH. If Bob chooses HT, then Bob wins. Alice has to choose H for the first flip. Then Bob chooses T and wins. On the other hand, if Bob chooses TT for his string, the game becomes infinite. On her turn, Alice always chooses H, while on his turn Bob always chooses T. The game outcome is an alternating string HTHTHT… and no one wins.

Suppose n = 4, Alice chooses HHTT, and Bob chooses THHH. The game proceeds as HTHHTHHH, at which point Bob wins.

This game is very interesting. The outcome depends on how Alice’s and Bob’s chosen strings overlap with each other. We wrote a paper about this game, which is available at math.CO arXiv:2006.09588.