Archive for the ‘Math Competitions’ Category.

Leon Vaserstein’s Problems

I met Leon Vaserstein at a party. What do you think I do at parties? I bug people for their favorite problems, of course. The first riddle Leon gave me is a variation on a famous problem I had already written about. Here’s his version:

The hypotenuse of a right triangle is 10 inches, and one of the altitudes is 6 inches. What is the area?

When Leon told me that he had designed some problems for the Soviet Olympiads, naturally I wanted to hear his favorite:

A closed polygonal chain has its vertices on the vertices of a square grid and all the segments are the same length. Prove that the number of segments is even.

Share:Facebooktwitterredditpinterestlinkedinmail

Moscow Math Olympiad

The Moscow Math Olympiad has a different set of problems for every grade. Students need to write a proof for every problem. These are the 8th grade problems from this year’s Olympiad:

Problem 1. There were 6 seemingly identical balls lying at the vertices of the hexagon ABCDEF: at A — with a mass of 1 gram, at B — with a mass of 2 grams, …, at F — with a mass of 6 grams. A hacker switched two balls that were at opposite vertices of the hexagon. There is a balance scale that allows you to say in which pan the weight of the balls is greater. How can you decide which pair of balls was switched, using the scale just once?

Problem 2. Peter was born in the 19th century, while his brother Paul was born in the 20th. Once the brothers met at a party celebrating both birthdays. Peter said, “My age is equal to the sum of the digits of my birth year.” “Mine too,” replied Paul. By how many years is Paul younger than Peter?

Problem 3. Does there exist a hexagon which can be divided into four congruent triangles by a single line?

Problem 4. Every straight segment of a non-self-intersecting path contains an odd number of sides of cells of a 100 by 100 square grid. Any two consecutive segments are perpendicular to each other. Can the path pass through all the grid vertices inside and on the border of the square?

Problem 5. Denote the midpoints of the non-parallel sides AB and CD of the trapezoid ABCD by M and N respectively. The perpendicular from the point M to the diagonal AC and the perpendicular from the point N to the diagonal BD intersect at the point P. Prove that PA = PD.

Problem 6. Each cell in a square table contains a number. The sum of the two greatest numbers in each row is a, and the sum of the two greatest numbers in each column is b. Prove that a = b.

Share:Facebooktwitterredditpinterestlinkedinmail

Enemies and Friends

by Tanya Khovanova and Alex Ryba

The following problem appeared at the Gillis Math Olympiad organized by the Weizmann Institute:

A foreign government consists of 12 ministers. Each minister has 5 friends and 6 enemies amongst the ministers. Each committee needs 3 ministers. A committee is considered legitimate if all of its members are friends or all of its members are enemies. How many legitimate committees can be formed?

Surprisingly, this problem implies that the answer doesn’t depend on how exactly enemies and friends are distributed. This meta thought lets us calculate the answer by choosing an example. Imagine that the government is divided into two factions of six people. Within a faction people are friends, but members of two different factions dislike each other. Legitimate committees can only be formed by choosing all three members from the same faction. The answer is 40.

We would like to show that actually the answer to the problem doesn’t depend on the particular configuration of friendships and enmities. For this, we will count illegitimate committees. Every illegitimate committee has exactly two people that have one enemy and one friend in the committee. Let’s count all the committees from the point of view of these “mixed” people. Each person participates in exactly 5*6 committees as a mixed person. Multiply by 12 (the number of people), divide by 2 (each committee is counted twice) and you get the total 180. This gives an answer of 40 for the number of legitimate committees without using a particular example.

What interests us is the fact that the number of illegitimate, as well as legitimate, committees is completely defined by the degree distribution of friends. For any set of people and who are either friends or enemies with each other, the number of illegitimate committees can be calculated from the degree distribution of friends in the same way as we did above.

Any graph can be thought of as representing friendships of people, where edges connect friends. This cute puzzle tells us that the sum of the number of 3-cliques and 3-anti-cliques depends only on the degree distribution of the graph.

As a non mathematical comment, the above rule for legitimate committees is not a bad idea. In such a committee there is no reason for two people to gang up on the third one. Besides, if at some point in time all pairs of friends switch to enemies and vice versa, the committees will still be legitimate.

Share:Facebooktwitterredditpinterestlinkedinmail

Good Math Research Projects for High School

by Pavel Etingof and Tanya Khovanova

We worked for several years with RSI where we supervised summer math research projects by high school students. Now, we’ve started an additional program at MIT’s math department called PRIMES, where local high school students do math research during the academic year. In this essay we would like to discuss what makes a good math research project for a high school student.

A doable project. The project should not be believed to be extremely difficult to yield at least results. It is very discouraging for an aspiring mathematician not to produce anything during their first project.

An accessible beginning. The student should be able to start doing something original soon after the start of the project. After all, they don’t come to us for coursework, but for research.

Flexibility. It is extremely important to offer them a project that is adjustable; it should go in many directions with many different potential kinds of results. Since we do not know the strength of incoming students in advance, it is useful to have in mind both easier and harder versions of the project.

Motivation. It is important for the project to be well motivated, which means related to other things that have been studied and known to be interesting, to research of other people, etc. Students get more excited when they see that other people are excited about their results.

A computer component. This is not a must for a good project. But modern mathematics involves a lot of computation and young students are better at it than many older professors. Such a project gives young students the opportunity to tackle something more senior people are interested in but might not have enough computer skills to solve. In addition, through computer experiments students get exposed to abstract notions (groups, rings, Lie algebras, representations, etc.) in a more “hands-on” way than when taking standard courses, and as a result are less scared of them.

A learning component. It is always good when a project exposes students to more advanced notions.

The student should like their project. This is very difficult to accomplish when projects are chosen in advance before we meet the students. However, we try to match them to great projects by using the descriptions they give of their interests on their applications. It goes without saying that mentors should like their project too.

Having stated the desired properties of a good project, let us move on to giving examples: bad projects and good projects. We start with a bad one:

Prove that the largest power of 2 that doesn’t contain 0 is 286.

The project satisfies only one requirement: it contains a computer component. Otherwise, it doesn’t have an accessible beginning. It is not very flexible: if the student succeeds, the long-standing conjecture will be proven; if s/he doesn’t, there is not much value in intermediate results. The question is not very interesting. The only motivation is that it has been open for a long time. Also, there is not much to learn. Though, almost any theoretical question can be made flexible. We can start with the question above and change its direction to make it more promising and enticing.

Another bad example is a project where the research happens after the programs are written. This is bad because it is difficult to estimate the programming abilities of incoming students. It doesn’t have an accessible beginning and there is no flexibility until the programming part is finished. If the student can’t finish the programming quickly, s/he will not have time to look at the results and produce conjectures. For example, almost any project in studying social networks may fall into this category:

Study an acquaintance graph for some epic movies or fiction, for example Star Wars or The Lord of the Rings. In this graph people are vertices and two people are connected by an edge if they know each other. The project is to compare properties of such graphs to known properties of other social networks.

Though the networks in movies are much smaller than other networks that people study, the amount of programming might be substantial. This project can be a good project for a person with a flexible time frame or a person who is sure in advance that there will be enough time for him/her to look at the data.

Now on to an example of a good project. Lynnelle Ye and her mentor, Tirasan Khandhawit, chose to analyze the game of Chomp on graphs during RSI 2009.

Given a graph, on each turn a player can remove an edge or a vertex together with all adjacent edges. The player who doesn’t have a move loses. This game was previously solved for complete graphs and forest graphs, so the project was to analyze the game for other types of graphs.

It is clear how to analyze the game for any particular new graph. So that could be a starting point providing an accessible beginning. After that the next step could be to analyze other interesting sets of graphs. The flexibility is guaranteed by the fact that there are many sets of graphs that can be used. In addition, the project entails learning some graph theory and game theory. And the project has a computational component.

Lynnelle Ye successfully implemented this project and provided a complete analysis of complete n-partite graphs for arbitrary n and all bipartite graphs. She also gave partial results for odd-cycle pseudotrees. The paper is available at the arxiv. Not surprisingly, Lynelle got fourth place in the Intel Science Talent Search and second place in the Siemens Competition.

Share:Facebooktwitterredditpinterestlinkedinmail

The Horsemen Sequences

33 horsemen are riding in the same direction along a circular road. Their speeds are constant and pairwise distinct. There is a single point on the road where the horsemen can pass one another. Can they ride in this fashion for an arbitrarily long time?

The puzzle appeared at the International Tournament of the Towns and at the Moscow Olympiad. Both competitions were held on the same day, which incidentally fell on Pi Day 2010. Just saying: at the Tournament the puzzle was for senior level competitors; at the Moscow Olympiad it was for 8th graders.

Warning: If you want to solve it yourself first, pause now, because here is the solution I propose.

First, consider two horsemen who meet at that single point. The faster horseman passes the slower one and gallops ahead and the slower one canters along. The next meeting point should be at the same place in the circle. Suppose the slower horseman rides n full circles before the next meeting, then the second horseman could not have passed the first in between, so he has to ride n+1 full circles. That means their speeds should have a ratio of (n+1)/n for an integer n. And vice versa, if their speeds have such a ratio, they will meet at the same location on the circle each time. That means that to solve the problem, we need to find 33 different speeds with such ratios.

As all speed ratios are rational numbers, we can scale speeds so that they are relatively prime integers. The condition that two integers have a ratio (n+1)/n is equivalent to the statement that two integers are divisible by their difference. So the equivalent request to the problem is to find a set of 33 positive integers (or prove non-existence), such that every two integers in the set are divisible by their difference.

Let’s look at examples with a small number of horsemen. For two riders we can use speeds 1 and 2. For three riders, speeds 2, 3 and 4.

Now the induction step. Suppose that we found positive integer speeds for k horsemen. We can add one more horseman with zero speed who quietly stays at the special point and everyone else passes him. The difference condition is satisfied. We just need to tweak the set of speeds so that the lazy horseman starts moving.

We can see that if we add the least common multiple to every integer in a set of integers such that every two numbers in a pair are divisible by their difference, then the condition stays satisfied. So by induction we can find 33 horsemen. Thus, the answer to the problem is: Yes they can.

Now I would like to apply that procedure from the solution to calculate what kind of speeds we get. If we start with one rider with the speed of 1, we add the second rider with speed 0, then we add 1 to both speeds, getting the solution for two riders: 1 and 2. Now that we have a solution for two riders, we add a third rider with speed 0 then add 2 to every speed, getting the solution for three horsemen: 2, 3 and 4. So the procedure gave us the solutions we already knew for two and three horsemen.

If we continue this, we’ll get speeds 12, 14, 15 and 16 for four riders. Similarly, 1680, 1692, 1694, 1695, and 1696 for five riders.

We get two interesting new sequences out of this. The sequence of the fastest rider’s speed for n horsemen is: 1, 2, 4, 16, 1696. And the sequence of the least common multiples for n−1 riders — which is the same as the lowest speed among n riders — is: 1, 1, 2, 12, 1680, 343319185440.

The solution above provides very large numbers. It is possible to find much smaller solutions. For example for four riders the speeds 6, 8, 9 and 12 will do. For five riders: 40, 45, 48, 50 and 60.

I wonder if my readers can help me calculate the minimal sequences of the fastest and slowest speeds. That is, to find examples where the integer speed for the fastest (slowest) horseman is the smallest possible.

Share:Facebooktwitterredditpinterestlinkedinmail

Tetrahedron Problems

My blog is getting more famous. Now I don’t need to look around for nice problems, for my readers often send them to me. In response to my blog about him, Sergey Markelov’s Best, Markelov sent me more of his problems. Here is a cute tetrahedron problem that he designed:

Six segments are such that you can make a triangle out of any three of them. Is it true that you can build a tetrahedron out of all six of them?

Another reader, Alexander Shen, sent me a different tetrahedron problem from a competition after reading my post on Problem Design for Multiple Choice Questions:

Imagine the union of a pyramid based on a square whose faces are equilateral triangles and a regular tetrahedron that is glued to one of these faces. How many faces will this figure have?

Shen wrote that the right answer to this problem had been rumored to have a negative correlation with the result of the entire test.

Share:Facebooktwitterredditpinterestlinkedinmail

The Second IMO Gold Girl

Me in 1975Janet Mertz encouraged me to find IMO girls and compare their careers to that of their teammates. I had always wanted to learn more about the legendary Lida Goncharova — who in 1962 was the first girl to win an IMO gold medal. So I located her, and after an interview, wrote about her. Only 14 years later, in 1976, did the next girl get a gold medal. That was me. I was ranked overall second and had 39 points out of 40.

As I did in the article about Lida, I would like to compare my math career to that of my teammates.

I got my PhD in 1988 and moved to the US in 1990. My postdoc at MIT in 1993 was followed by a postdoc at Bar-Ilan University. In 1996 I got a non-paying visiting position at Princeton University. In 1998 I gave up academia and moved to industry, accepting an offer from Bellcore. There were many reasons for that change: family, financial, geographical, medical and so on.

On the practical level, I had had two children and raising them was my first priority. But there was also a psychological element to this change: my low self-esteem. I believed that I wasn’t good enough and wouldn’t stand a chance of finding a job in academia. Looking back, I have no regrets about putting my kids first, but I do regret that I wasn’t confident enough in my abilities to persist.

I continued working in industry until I resigned in January 2008, due to my feeling that I wasn’t doing what I was meant to do: mathematics. Besides, my children were grown, giving me the freedom to leave a job I did not like and return to the work I love. Now I am a struggling freelance mathematician affiliated with MIT. Although my math blog is quite popular and I have been publishing research papers, I am not sure that I will ever be able to find an academic job because of my non-traditional curriculum vitae.

The year 1976 was very successful for the Soviet team. Out of nine gold medals our team took four. My result was the best for our team with 39 points followed by Sergey Finashin and Alexander Goncharov with 37 points and by Nikita Netsvetaev with 34 points.

Alexander Goncharov became a full professor at Brown University in 1999 and now is a full professor at Yale University. His research is in Arithmetic Algebraic Geometry, Teichmuller Theory and Integral Geometry. He has received multiple awards including the 1992 European Math Society prize. Sergey Finashin is very active in the fields of Low Dimensional Topology and Topology of Real Algebraic Varieties. He became a full professor at Middle East Technical University in Ankara, Turkey in 1998. Nikita Netsvetaev is an expert in Differential Topology. He is a professor at Saint Petersburg State University and the Head of the High Geometry Department.

Comparing my story to that of Lida, I already see a pattern emerging. Now I’m curious to hear the stories of other gold-winning women. I believe that the next gold girl, in 1984, was Karin Gröger from the German Democratic Republic. I haven’t yet managed to find her, so can my readers help?

Share:Facebooktwitterredditpinterestlinkedinmail

The Art of Checking

I wrote a series of essays about AMC competitions:

This essay is next in the series. Although it is not strictly about AMC, it should be useful during any test when you need to check your answers. There are several important rules which are helpful.

Rule 0. Checking is important. If wrong answers are punished, then correcting a mistake brings more points than solving a new problem. In addition, problems that were solved are often easier than problems yet to be solved, so finding a mistake might be faster than solving a new problem.

Rule 1. Your checking methods must be fast. The tests are generally timed. This means that in order to check your answers, you need to sacrifice your work on the next problem.

Rule 2. Customize how you check according to your strengths and weaknesses. For example, if you tend to jump to conclusions about what the question is going to be, and as a result answer your anticipated question instead of the one that is actually on the test, then when you are checking you should start reading the problem from the question. Or, if you usually make mistakes in geometry problems, you should allocate more time to geometry problems when you are checking. If you never make mistakes in arithmetic problems then you do not need to check those.

Rule 3. Mark problems that might need checking. If you do not have enough time to check all the problems, check only those you are not sure about.

Rule 4. Do not repeat your solution when you check. While solving the problem your brain often creates a pathway from start to finish. If on this pathway your brain decided to believe that two plus two is five, very often during checking, your brain will make the same mistake again. Because of that it is crucial to use other methods for checking than repeating your reasoning. In case you can’t find a way to check your answers using a different method and have to repeat your reasoning, you should repeat it in a different order.

This rule is so important, that I am providing some methods to change your brain pathway when you are checking your answers.

Plug in. Plugging in the answer you found is much faster than finding it. Use this method whenever possible. It is perfect for problems like this one below from 2004 AMC10-A:

What is the value of x if |x – 1| = |x – 2|?

Plug in an intermediate result. Sometimes you can’t plug in the answer, but you can plug in an intermediate result. In the following problem from 2004 AMC10-B you can plug in the number of nickels and dimes:

Patty has 20 coins consisting of nickels and dimes. If her nickels were dimes and her dimes were nickels, she would have 70 cents more. How much are her coins worth?

Calculate something else related to your answer. For example a negation. Here is a problem from 2004 AMC10-B:

How many two-digit positive integers have at least one 7 as a digit?

If you calculated the answer directly, to check it you may want to calculate the number of two-digit positive integers that do not contain 7.

Create an example. Sometimes you solve a problem by reasoning, but to check it you might create a particular example. Here is a problem from 2001 AMC10:

Let P(n) and S(n) denote the product and the sum, respectively, of the digits of the integer n. For example, P(23) = 6 and S(23) = 5. Suppose N is a two-digit number such that N = P(N) + S(N). What is the units digit of N?

If we denote the tens digit by a and the units digit by b, then N = 10a + b, P(N) = a*b, and S(N) = a + b. We get an equation a(b+1) = 10a, from which the answer is 9. To check the answer we do not need to repeat the reasoning. It is enough to check that 19 is the sum of the product of its digits plus the digits.

Here is another problem from 2001 AMC10:

Suppose that n is the product of three consecutive integers and that n is divisible by 7. Which of the following is not necessarily a divisor of n?

The list of choices is: 6, 14, 21, 28, 42. Your solution might go like this: the product of three consecutive numbers is divisible by 6. Hence, n is divisible by 42. So, the answer must be 28. To check you might consider a product of three consecutive numbers: 5*6*7=210 and see that it is not divisible by 4, hence it is not divisible by 28.

Rule 5. Embrace the partial check. It is very important to check your answers fast. Sometimes you can gain speed if you do not check the problem completely, but check it partially. For example, you can check that your answer is one of the two correct answers. There are many methods for partial checking.

Try an example. Sometimes an example doesn’t guarantee that your choice is correct, but it increases your confidence in your answer. Here is another problem from 2001 AMC10:

The sum of two numbers is S. Suppose 3 is added to each number and then each of the resulting numbers is doubled. What is the sum of the final two numbers?

The choices are: 2S + 3, 3S + 2, 3S + 6, 2S + 6, 2S + 12. You can reason that increasing each summand by 3, increases the sum by 6. After that doubling each summand increases the resulting sum twice, so the answer is 2S + 12. To check the answer you can use an example. Usually an example doesn’t guarantee the confirmation of your answer, but it might help you eliminate some of the wrong answers. For example, if you choose zero and zero as your initial two numbers, then S = 0, and your transformation brings the result to 12, which confirms your answer 2S + 12. In this particular case, a very easy specific example excluded all the wrong answers.

Divisibility. Sometimes it is faster to calculate the remainder of the answer by some number.

For example, look at the following problem from 2003 AMC10:

What is the units digit of 132003?

The choices are 1, 3, 7, 8, 9. We can immediately say that the answer must be an odd number.

Approximation check. One important example of a partial check is an approximation check. By estimating an approximate answer you might exclude most of the wrong answers. Consider this problem from 2001 AMC12:

How many positive integers not exceeding 2001 are multiples of 3 or 4 but not 5?

The divisibilities by 3, 4 or 5 shouldn’t correlate with each other. Approximately one third of those number are multiples of 3 and one quarter are multiples of 4. Let’s say that one twelfth are multiples of both 3 and 4. Hence, we estimate the portion of numbers that are multiples of 3 or 4 as 1/3 + 1/4 – 1/12 = 1/2. We have about 1,000 such numbers. The number of numbers that are, in addition, not divisible by 5, are less than that. So out of the given choice of (A) 768, (B) 801, (C) 934, (D) 1067, (E) 1167, we can immediately confirm that the answer is among the first three.

The methods above can be useful even if you do not have multiple choices. But if you do…

Rule 6. Use given choices as extra information. In the previous examples you saw how to use a partial check to exclude some of the choices. Here is a specific example from 2006 AMC10-A of how to exclude choices:

What non-zero real value for x satisfies (7x)14 = (14x)7?

The choices are: 1/7, 2/7, 1, 7, 14. If you solved the problem directly, to check it you can reason why other choices do not work. In this particular case it can be done very fast. 1/7 doesn’t work because the left part of the equation becomes 1 when the right is clearly not. 1 and 7 do not work because the left part is odd and the right is even; 14 doesn’t work because the left is clearly bigger than the right.

Rule 7. Use meta considerations. If you get into the mind of the designers you can better anticipate when you should check more thoroughly. Consider this problem from 2006 AMC10-A:

A digital watch displays hours and minutes with AM and PM. What is the largest possible sum of the digits in the display?

The most common mistake would be to assume that 12:59 supplies the largest sum, which is 17. But look at the choices: 17, 19, 21, 22, 23. When the designers are asking to find the largest number with some property, they assume that some students will make a mistake and chose a smaller number over a larger one. That means the designers would include this potential mistake among the choices. So the answer is extremely unlikely to be the smallest number on the list of choices. Thus, if you think the answer is 17, understanding how these problems are constructed should alert you to thoroughly check your answer. Indeed, the correct answer is 23 which corresponds to 9:59. Not surprisingly, it is the largest on the list of choices.

AMC 10/12 is coming on February 8 and HMMT on February 12. Happy checking.

Share:Facebooktwitterredditpinterestlinkedinmail

Sergey Markelov’s Best

Nikolay Konstantinov, the creator and the organizer of the Tournament of the Towns, discussed some of his favorite tournament problems in a recent Russian interview. He mentioned two beautiful geometry problems by Sergey Markelov that I particularly loved. The first one is from the 2003 tournament.

An ant is sitting on the corner of a brick. A brick means a solid rectangular parallelepiped. The ant has a math degree and knows the shortest way to crawl to any point on the surface of the brick. Is it true that the farthest point from the ant is the opposite corner?

The other one is from 1995.

There are six pine trees on the shore of a circular lake. A treasure is submerged on the bottom of the lake. The directions to the treasure say that you need to divide the pine trees into two groups of three. Each group forms a triangle, and the treasure is at the midpoint between the two triangles’ orthocenters. Unfortunately, the directions do not explain how exactly to divide the trees into the groups. How many times do you need to dive in order to guarantee finding the treasure?

Share:Facebooktwitterredditpinterestlinkedinmail

Problem Design for Multiple Choice Questions

I gave my students a problem from the 2002 AMC 10-A:

Tina randomly selects two distinct numbers from the set {1, 2, 3, 4, 5}, and Sergio randomly selects a number from the set {1, 2, …, 10}. The probability that Sergio’s number is larger than the sum of the two numbers chosen by Tina is: (A) 2/5, (B) 9/20, (C) 1/2, (D) 11/20, (E) 24/25.

Here is a solution that some of my students suggested:

On average Tina gets 6. The probability that Sergio gets more than 6 is 2/5.

This is a flawed solution with the right answer. Time and again I meet a problem at a competition where incorrect reasoning produces the right answer and is much faster, putting students who understand the problem at a disadvantage. This is a design flaw. The designers of multiple-choice problems should anticipate mistaken solutions such as the one above. A good designer would create a problem such that a mistaken solution leads to a wrong answer — one which has been included in the list of choices. Thus, a wrong solution would be punished rather than rewarded.

Readers: here are three challenges. First, to ponder what is the right solution. Second, to change parameters slightly so that the solution above doesn’t work. And lastly, the most interesting challenge is to explain why the solution above yielded the correct result.

Share:Facebooktwitterredditpinterestlinkedinmail