Archive for March 2017

Winning Nim Against a Player who Plays Randomly

I recently wrote about my way of playing Nim against a player who doesn’t know how to play. If my move starts in an N-position, then I obviously win. If my move starts in a P-position, I would remove one token hoping that more tokens for my opponent means more opportunity for them to make a mistake. But which token to remove? Does it make a difference from which pile I choose?

Consider the position (2,4,6). If I take one token, my opponent has 11 different moves. If I choose one token from the first or the last pile, my opponent needs to get to (1,4,5) not to lose. If I choose one token from the middle pile, my opponent needs to get to (1,3,2) not to lose. But the first possibility is better, because there are more tokens left, which gives me a better chance to have a longer game in case my opponent guesses correctly.

That is the strategy I actually use: I take one token so that the only way for the opponent to win is to take one token too.

This is a good heuristic idea, but to make such a strategy precise we need to know the probability distribution of the moves of my opponent. So let us assume that s/he picks a move uniformly at random. If there are n tokens in a N-position, then there are n − 1 possible moves. At least one of them goes to a P-position. That means my best chance to get on the winning track after the first move is not more than n/(n−1).

If there are 2 or 3 heaps, then the best strategy is to go for the longest game. With this strategy my opponent always has exactly one move to get to a P-position, I win after the first turn with probability n/(n−1). I lose the game with probability 1/(n−1)!!.

Something interesting happens if there are more than three heaps. In this case it is possible to have more than one winning move from a N-position. It is not obvious that I should play the longest game. Consider position (1,3,5,7). If I remove one token, then my opponent has three winning moves to a position with 14 tokens. On the other hand, if I remove 2 tokens from the second or the fourth pile, then my opponent has one good move, though to a position with only 12 tokens. What should I do?

I leave it to my readers to calculate the optimal strategy against a random player starting from position (1,3,5,7).

Share:Facebooktwitterredditpinterestlinkedinmail

The Hidden Beauty

It is rare when a word equation coincides with a number equation.

Problem. A store sells letter magnets. The same letters cost the same and different letters might not cost the same. The word ONE costs 1 dollar, the word TWO costs 2 dollars, and the word ELEVEN costs 11 dollars. What is the cost of TWELVE?

Share:Facebooktwitterredditpinterestlinkedinmail

Can You Solve My Problems?

Melanoma StatsAlex Bellos wrote a puzzle book Can You Solve My Problems? Ingenious, Perplexing, and Totally Satisfying Math and Logic Puzzles The book contains a mixture of famous puzzles and their solutions. Some of the puzzles are not mathematical in the strictest sense, but still have an appeal for mathematicians. For example, which integer comes up first when you alphabetize all the integers up to a quadrillion?

Recognize the puzzle on that book cover? You’re right! That’s my Odd One Out puzzle. Doesn’t it look great in lights on that billboard in London?

Mine isn’t the only terrific puzzle in the book. In fact, one of the puzzles got my special attention as it is related to our current PRIMES polymath project. Here it is:

A Sticky Problem. Dick has a stick. He saws it in two. If the cut is made [uniformly] at random anywhere along the stick, what is the length, on average, of the smaller part?

Odd One Out Billboard

Share:Facebooktwitterredditpinterestlinkedinmail

Playing with Pascal’s Triangle

The beautiful Pascal triangle has been around for many years. Can you say something new about it?

Pascal Triangle Mod 2

Of course you can. Mathematicians always find new way to look at things. In 2012 RSI student, Kevin Garbe, did some new and cool research related to the triangle. Consider Pascal’s triangle modulo 2, see picture which was copied from a stackexchange discussion.

A consecutive block of m digits in one row of the triangle modulo 2 is called an m-block. If you search the triangle you will find that all possible binary strings of length 2 are m-blocks. Will this trend continue? Yes, you can find any possible string of length 3, but it stops there. The blocks you can find are called accessible blocks. So, which blocks of length 4 are not accessible?

There are only two strings that are not accessible: 1101 and 1011. It is not surprising that they are reflections of each other. Pascal’s triangle respects mirror symmetry and the answer should be symmetric with respect to reflection.

You can’t find these blocks on the picture, but how do we prove that they are not accessible, that is, that you can’t ever find them? The following amazing property of the triangle can help. We call a row odd/even, if it corresponds to binomial coefficients of n choose something, where n is an odd/even number. Every odd row has every digit doubled. Moreover, if we take odd rows and replace every double digit with its single self we get back Pascal’s triangle. Obviously the two strings 1101 and 1011 can’t be parts of odd rows.

What about even rows? The even rows have a similar property: every even-indexed digit is a zero. If you remove these zeros you get back Pascal’s triangle. The two strings 1101 and 1011 can’t be part of even rows. Therefore, they are not accessible.

The next question is to count the number of inaccessible blocks of a given length: a(n). This and much more was done by Kevin Garbe for his RSI 2012 project. (I was the head mentor of the math projects.) His paper is published on the arxiv. The answer to the question can be found by constructing recurrence relations for odd/even rows. It can be shown that a(2r) = 3a(r) + a(r+1) − 6 and a(2r+1) = 3a(r) + 2a(r+1) − 6. As a result the number of inaccessible blocks of length n is n2n + 2. I wonder if there exists a direct proof of this formula without considering odd and even rows separately.

This RSI result was so pretty that it became a question at our entrance PRIMES test for the year 2013. In the test we changed the word accessible to admissible, so that it would be more difficult for applicants to find the research. Besides, Garbe’s paper wasn’t arxived yet.

The pretty picture above is from the stackexchange, where one of our PRIMES applicants tried to solicit help in solving the test question. What a shame.

Share:Facebooktwitterredditpinterestlinkedinmail

My Favorite Problems from the Moscow Math Olympiad 2016

I picked four problems that I liked from the Moscow Math Olympiad 2016:

Problem 1. Ten people are sitting around a round table. Some of them are knights who always tell the truth, and some of them are knaves who always lie. Two people said, “Both neighbors of mine are knaves.” The other eight people said, “Both neighbors of mine are knights.” How many knights might be sitting around the round table?

Problem 2. Today at least three members of the English club came to the club. Following the tradition, each member brought their favorite juice in the amount they plan to drink tonight. By the rules of the club, at any moment any three members of the club can sit at a table and drink from their juice bottles on the condition that they drink the same amount of juice. Prove that all the members can finish their juice bottles tonight if and only if no one brings more than the third of the total juice brought to the club.

Problem 3. Three piles of nuts together contain an even number of nuts. One move consists of moving half of the nuts from a pile with an even number of nuts to one of the other two piles. Prove that no matter what the initial position of nuts, it is possible to collect exactly half of all the nuts in one pile.

Problem 4. N people crossed the river starting from the left bank and using one boat. Each time two people rowed a boat to the right bank and one person returned the boat back to the left bank. Before the crossing each person knew one joke that was different from all the other persons’ jokes. While there were two people in the boat, each told the other person all the jokes they knew at the time. For any integer k find the smallest N such that it is possible that after the crossing each person knows at least k more jokes in addition to the one they knew at the start.

Spoiler for Problem 2. I want to mention a beautiful solution to problem 2. Let’s divide a circle into n arcs proportionate to the amount of juice members have. Let us inscribe an equilateral triangle into the circle. In a general position the vertices of the triangle point to three distinct people. These are the people who should start drinking juices with the same speed. We rotate the triangle to match the drinking speed, and as soon as the triangle switches the arcs, we switch drinking people correspondingly. After 120 degree rotation all the juices will be finished.

Share:Facebooktwitterredditpinterestlinkedinmail

My Last Visit to Smullyan

Raymond SmullyanI already posted a funny true story that Smullyan told me when I last visited him. Raymond Smullyan died recently at the age of 97 and my mind keeps coming back to this last visit.

The year was 2012 and I was about to drive back to Boston after my talk at Penn State. Smullyan’s place in the Catskills was on the way—sort of. I wanted to call him, but I was apprehensive. Raymond Smullyan had a webpage on which his email was invisible. You could find his email address by looking at the source file or by highlighting empty space at the bottom of the page. Making your contact information invisible sends a mixed message.

While this was a little eccentric, it meant that only people who were smart enough to find it, could access his email address. I already knew his email because he had given it to me along with his witty reply to my blog post about our meeting at the Gathering for Gardner in 2010.

In our personal interactions, he always seemed to like me, so I called Raymond and arranged a visit for the next day around lunch time. When I knocked on his door, no one answered, but the door was open, and since Smullyan was expecting me, I walked right in. “Hello? Anyone there? Hello? Hello?” As I wandered around the house, I saw an open bedroom door and inside Smullyan was sleeping. So I sat down in his library and picked up a book.

When he woke up, he was happy to see me, and he was hungry. He told me that he didn’t eat at home, so we should go out together for lunch. I was hungry too, so I happily agreed. Then he said that he wanted to drive. I do not have a poker face, so he saw the fear in me. My only other trip with a nonagenarian driver flashed in front of my eyes. The driver had been Roman Totenberg and it had been the scariest drive I have ever experienced.

I said that I wanted to drive myself. Annoyed, Raymond asked me if I was afraid of him taking the wheel. I told him that I have severe motion sickness and always prefer to drive myself. Raymond could see that I was telling the truth. I got the impression that he was actually relieved when he agreed to go in my car.

We went to Selena’s Diner. He took out playing cards with which he showed me magic tricks. I showed him some tricks too. This was probably a bad move as he abandoned me to go to the neighboring table to show his magic tricks to a couple of young girls. They were horrified at first”his unruly hair, his over-the-top energy, his ebullient behavior”but between me and the waitress, we quickly reassured them. The girls enjoyed the tricks, and I enjoyed my visit.

Share:Facebooktwitterredditpinterestlinkedinmail