ApSimon’s Mints Investigation

I recently wrote a post about the ApSimon’s Mints problem:

New coins are being minted at n independent mints. There is a suspicion that some mints might use a variant material for the coins. There can only be one variant material. Therefore, fake coins weigh the same no matter where they’ve been minted. The weight of genuine coins is known, but the weight of fake coins is not. There is a machine that can precisely weigh any number of coins, but the machine can only be used twice. You can request several coins from each mint and then perform the two weighings in order to deduce with certainty which mints produce fake coins and which mints produce real coins. What is the minimum total of coins you need to request from the mints?

The post was accompanied by my paper Attacking ApSimon’s Mints.

Unfortunately, both the post and the paper contain wrong information. They both state that the number of coins as a sequence of the number of mints is 1, 2, 4, 8, 15, 38, 74. This is wrong. I took this data from the sequence A007673 in the OEIS database. The sequence had incorrect data lying dormant for 20 years. I believe that the sequence was generated from the paper of R. K. Guy and R. J. Nowakowsky, ApSimon’s Mints Problem, published in Monthly in 1994. To the credit of Guy and Nowakowsky, they never claimed to find the best solution: they just found a solution, thus providing a bound for the sequence. Someone mistook their solution for the optimal one and generated the sequence in the database.

After my post, my readers got interested in the problem and soon discovered the mistake. First Konstantin Knop found a solution for 6 mints with 30 coins and for 7 mints with 72 coins. Konstantin is my long-time collaborator. I trust him so I was sure the sequence was flawed. Then someone located a reference to a paper in Chinese A New Algorithm for ApSimon’s Mints Problem. Although none of my readers could find the paper itself nor translate the abstract from Chinese. But judging from the title and the formulae it was clear that they found better bounds than the sequence in the database. My readers got excited and tried to fix the sequence. David Reynolds improved on Konstantin’s results with a solution for 6 mints with 29 coins and for 7 mints with 52 coins. David did even better on his next try with 28 and 51 coins correspondingly. He also found a solution with 90 coins for 8 mints. Moreover, his exhaustive search proved that these were the best solutions.

Now the sequence in the database is fixed. It starts 1, 2, 4, 8, 15, 28, 51, 90.

For future generations I would like to support each number of the sequence by an example. I use the set P(Q) to represent the sequence of how many coins are taken from each mint for the first(second) weighing. For one mint, only one coin and one weighing is needed. ApSimon himself calculated the first five values, so they were not in dispute.

  • a(2) = 2: P=(1,0) and Q=(0,1). Found by ApSimon.
  • a(3) = 4: P=(0,1,2) and Q=(1,1,0). Found by ApSimon.
  • a(4) = 8: P=(0,1,2,3) and Q=(1,0,2,2) or P=(0,1,1,4), Q=(2,0,1,1). Found by ApSimon.
  • a(5) = 15: P=(0,1,1,4,5) and Q=(2,1,2,5,0). Found by ApSimon.
  • a(6) = 28: P=(1,2,2,5,5,0) and Q=(0,1,2,1,8,10). Found by Robert Israel, Richard J. Mathar, and David Reynolds,
  • a(7) = 51. P=(2,3,7,2,8,12,0) and Q=(0,2,1,7,7,12,12). Found by David Applegate and David Reynolds.
  • a(8) = 90. P=(4,6,6,7,3,13,15,3) and Q=(4,0,1,6,12,12,1,27). Found by David Applegate and David Reynolds.

There is a solution for nine mints using 193 coins that is not confirmed to be optimal. It was found by David Reynolds: P=(1,2,4,12,5,4,20,39,43) and Q=(0,1,3,3,25,33,34,18,27). In addition, David Reynolds provided a construction that reduces the upper bound for n mints to (3(n+1)−2n−3)/4. The following set of coins work: P=(1,3,7,15,…,2n−1) and Q=(1,4,13,40,…,(3n−1)/2).

Share:Facebooktwitterredditpinterestlinkedinmail

Leave a comment