Archive for the ‘Puzzles’ Category.

My Favorite Problems from the Moscow Math Olympiad 2016

I picked four problems that I liked from the Moscow Math Olympiad 2016:

Problem 1. Ten people are sitting around a round table. Some of them are knights who always tell the truth, and some of them are knaves who always lie. Two people said, “Both neighbors of mine are knaves.” The other eight people said, “Both neighbors of mine are knights.” How many knights might be sitting around the round table?

Problem 2. Today at least three members of the English club came to the club. Following the tradition, each member brought their favorite juice in the amount they plan to drink tonight. By the rules of the club, at any moment any three members of the club can sit at a table and drink from their juice bottles on the condition that they drink the same amount of juice. Prove that all the members can finish their juice bottles tonight if and only if no one brings more than the third of the total juice brought to the club.

Problem 3. Three piles of nuts together contain an even number of nuts. One move consists of moving half of the nuts from a pile with an even number of nuts to one of the other two piles. Prove that no matter what the initial position of nuts, it is possible to collect exactly half of all the nuts in one pile.

Problem 4. N people crossed the river starting from the left bank and using one boat. Each time two people rowed a boat to the right bank and one person returned the boat back to the left bank. Before the crossing each person knew one joke that was different from all the other persons’ jokes. While there were two people in the boat, each told the other person all the jokes they knew at the time. For any integer k find the smallest N such that it is possible that after the crossing each person knows at least k more jokes in addition to the one they knew at the start.

Spoiler for Problem 2. I want to mention a beautiful solution to problem 2. Let’s divide a circle into n arcs proportionate to the amount of juice members have. Let us inscribe an equilateral triangle into the circle. In a general position the vertices of the triangle point to three distinct people. These are the people who should start drinking juices with the same speed. We rotate the triangle to match the drinking speed, and as soon as the triangle switches the arcs, we switch drinking people correspondingly. After 120 degree rotation all the juices will be finished.

Share:Facebooktwitterredditpinterestlinkedinmail

A Random Scale Solution

I recently posted the following puzzle:

Puzzle. We have 32n identical-looking coins. One of the coins is fake and lighter than the other coins, which all are real. We also have three scales: two normal and one random. Find the fake coin in the smallest total number of weighings.

Here is my son Sergei’s solution. Divide the coins into nine groups of equal size and number the groups in ternary: 00, 01, 02, 10, 11, 12, 20, 21, and 22. On each scale we put three groups versus three groups. On the first scale we compare the three groups that start with 1 with the three groups that start with 2. For the second scale we do the same using the last digit instead of the first one, and for the third scale we use the sum of two digits modulo 3. Any pair of scales, if they are assumed to be normal, would point to one out of nine groups as the group containing the fake coin.

If all three pairs of scales agree on one group, then this is the group containing the fake coin. Thus in three weighings, we reduce the number of groups of coins by a factor of nine. If the pairs of scales do not agree, then the random scale produced a wrong weighing and thus can be found out. How do we do that? We have three out of nine groups of coins each of which might contain the fake coin. We compare two of the groups on all three scales. This way we know exactly which group contains the fake coin and, consequently, which scale generated a wrong weighing. If we know the random scale, we can speed up the rest of the process of finding the fake coin. Thus in the worst case we require 3n+3 weighings.

The big idea here is that as soon as the random scale shows a wrong weighing result it can be found out. So in the worst case, the random scale behaves as a normal scale and messes things up at the very end. Sergei’s solution can be improved to 3n+1 weighings. Can you do that?

The improved solution is written in a paper Взвешивания на «хитрых весах» (in Russian) by Konstantin Knop, that is published in Математика в школе 2009-2. The paper contains an even stronger solution that provides a better asymptotics.

Share:Facebooktwitterredditpinterestlinkedinmail

A Homogeneous Date

May 5 of 1955 can be written as 5/5/55. How many times during the 20th century the date in the format month day and the last two digits of the year can be written with the same digit?

Share:Facebooktwitterredditpinterestlinkedinmail

Alternators: People and Coins

If like me, you fancy Raymond Smullyan and his books, then you’ve heard about knights and knaves. Knights always tell the truth and knaves always lie. In addition to knights and knaves, there are normal people who sometimes tell the truth and sometimes lie. Here is a puzzle.

Puzzle. How, in one sentence, can a normal person prove that they are normal?

We can draw a parallel between people and coins. We can say that knights correspond to real coins, and knaves to fake coins that are lighter than real ones. Inspired by normal people, my coauthor Konstantin Knop invented chameleon coins. Chameleon coins can change their weight and behave like real or fake coins. I just wrote a post about chameleon coins.

Normal people are too unpredictable: they can consistently pretend to be knights or knaves. So logicians invented a simpler type of person, one who switches from telling the truth in one sentence to a lie in the next and then back to the truth. Such people are called alternators. Here is another puzzle:

Puzzle. You meet a person who is one of the three types: a knight, a knave, or an alternator. In two questions, find out which type they are.

Continuing a parallel between people and coins we can define alternator coins: the coins that switch their weight each time they are on the scale from weighing as much as real ones to weighing as much as fake ones. For the purposes of this essay, we assume that the fake coins are lighter than real ones. Unlike the chameleon coin, which might never reveal itself by always pretending to be real, the alternators can always be found. How do you find a single alternator among many real coins? There is a simple strategy: repeat every weighing twice. This strategy allows us to find an alternator among 9 coins in four weighings. Can we do better?

I used the alternator coins as a research project for my PRIMES STEP program where we do math research with students in seventh and eighth grade. The students started the alternator project and immediately discovered the strategy above. The next step is to describe a better strategy. For example, what is the maximum number of coins containing one alternator such that the alternator can always be found in four weighings?

But first we count possible outcomes. Suppose there is a strategy that finds an alternator. In this strategy we can’t have two unbalanced weighings in a row. To prove that, let us suppose there was an unbalanced weighing. Then the alternator switches its weight to a real coin and whether or not the alternator is on the scale, the next weighing must balance. The beauty of it is that given a strategy each outcome has to point to a particular coin as an alternator. That means the number of outcomes bounds the total number of coins that can be processed.

Counting the number of possible outcomes that do not have two unbalances in row is a matter of solving a recurrence, which I leave to the readers to find. The result is Jacobshtal numbers: the most beautiful sequence you might never have heard of. For example, the total number of possible outcomes of four weighings is 11. Since each outcome of a strategy needs to point to a coin, the total number of coins that can be processed in four weighings is not more than 11. But 11 is better than 9 in our previous strategy. Can we process 11 coins in four weighings? Yes, we can. I will describe the first part of the strategy.

So we have 11 coins, one of which is an alternator. In the first weighing we compare 5 coins against 5 coins. If the weighing unbalances, the alternator is on a lighter pan. Our problem is reduced to finding the alternator among five coins when we know that it is in the real state. If the weighing balances, then we know that if the alternator is among the coins on the scale it must now be in the light state. For the second weighting, we pick two sets of three coins out of this ten coins and compare them against each other. Notice that 3 is a Jacobsthal number, and 5, the number of coins outside the scale, is also a Jacobsthal number. If the second weighing balances, the alternator must be among 5 coins outside the scale. All but one of these coins are in the light state, and I leave it to the readers to finish the strategy. If the weighing unbalances, we need to find the alternator among 3 coins that are in the real state now. This can be done in two weighings, and again the readers are to the rescue.

It appears that Jacobsthal numbers provide the exact lower bound of the number of coins that can be processed. This is what my middle-schoolers discovered and proved. We wrote a paper on the subject. The strategy in the paper is adaptive. That means it changes depending on the results of the previous weighings. Can we find an oblivious strategy? I will tell you in later posts.

Share:Facebooktwitterredditpinterestlinkedinmail

A Random Scale

Suppose we have 3n identical-looking coins. One of the coins is fake and lighter than the other coins which all are real. We also have a random scale. That is a scale that at each weighing behaves randomly. Find the fake coin in the smallest number of weighings. Oops! That won’t work! It is impossible to find the fake coin. The scale can consistently misbehave in such a way as to blame a specific real coin for being fake.

Let’s try something else. Suppose we have two scales: one normal and one random. Find the fake coin.

What am I thinking? The normal scale can point to one coin and the random scale can point to another coin and we are in a “she said, he said” situation which we can’t resolve.

Now, in my final try, I’ll make it right. We actually have three scales, one of which is random. So here we go, with thanks to my son Sergei for giving me this puzzle:

Puzzle. We have 3n identical-looking coins. One of the coins is fake and lighter than the other coins, which all are real. We also have three scales: two normal and one random. Find the fake coin in the smallest total number of weighings.

Let’s start with this strategy: repeat every weighing on all three scales and have a majority vote. At least two of the scales will agree, thus pointing to the true result. This way we can use a divide-into-three-equal-groups strategy for one scale to find the fake coin. It will require 3n weighings.

Can we do better? Of course, we can. We can repeat every weighing on two scales. If they agree we do not need the third scale. If they do not agree, one of the scales is random and lying, and we can repeat the weighing on the third scale to “out” the random scale. After we identify one normal scale, the process goes faster. In the worst case we will need 2n + 1 weighings.

Can we do even better? Yes, we can. I will leave it to the readers to find a beautiful solution that is asymptotically better than the previous one.

Update on Dec 24, 2016. The total number of coins should be 32n, not 3n. We are looking at the worst case scenario, when the random scale is adversarial.

Share:Facebooktwitterredditpinterestlinkedinmail

Chameleon Coins

We all have played with problems in which we had real coins and fake (counterfeit) coins. For this post I assume that the fake coins are always lighter than the real coins. My coauthor Konstantin Knop invented a new type of a coin: a chameleon coin. This coin can mimic a fake or a real coin. It can also choose independently which coin to mimic for each weighing on a balance scale.

You cannot find the chameleon coin in a mix with real coins if it does not want to be found, because it can consistently behave as a real coin. Let’s add classic fake coins to the mix, the ones that are lighter. Still the task of identifying the chameleons using a balance scale cannot be achieved: the chameleons can pretend to be fake coins. We can’t identify the fake coins either, as the chameleons can mess things us up by consistently pretending to be fake.

What we can do is to find a small number of coins some of which are guaranteed to be fake. Consider the simplest setup, when we have one fake coin and one chameleon in our mix of N coins. That is we have N − 2 real coins. Our task now is to find TWO coins, one of which has to be fake. As usual we want to do it in the smallest number of weighings that guarantees that we’ll find the two coins. Let me give you a fun problem to solve:

Puzzle. The total number of coins is four. And as above we have one chameleon and one classic fake. In two weighings find two coins so that one of them is guaranteed to be fake.

If you want to learn more, we just wrote a paper titled Chameleon Coins.

Share:Facebooktwitterredditpinterestlinkedinmail

Who Is Left?

Centaurs, manticores, and minotaurs roam their planet. Their society is very democratic: any two animals can become sex partners. When two different species mate, their orgasm is so potent that they merge into one creature of the third species. For example, once one centaur and one manticore make love, they are reborn as one minotaur. At the beginning of the year 2016 there were 2016 centaurs, 2017 manticores, and 2018 minotaurs. They mated non-stop and at the end of the year only one creature was left on the planet. Which one?

This is one of those puzzles that I love-hate. I hate it because it is easy to answer this puzzle by inventing a specific mating pattern that ends with one animal. It is possible to get the correct answer without seeing the beauty. I love it because there is beauty in the explanation of why, if the mating ends with one animal, it has to be a specific animal.

The solution is charming, but being a mathematician this problem makes me wonder if ii is always possible to end with one animal. So I add another puzzle.

Describe the sets of parameters for which it is impossible to end up with one creature.

Share:Facebooktwitterredditpinterestlinkedinmail

A Faulty Scale

Today I have two new coin puzzles that were inspired by my son, Alexey Radul:

You have N > 2 identical-looking coins. All but one of them are real and weigh the same. One coin is fake and is lighter than the real ones. You also have a balance scale which might or might not be faulty. A faulty scale differs from a normal one in reversing the sense of unbalanced weighings—it shows a lighter pan as heavier and vice versa (but still shows equal-weight pans as weighing the same). What is the smallest number of weighings you need in order to figure out whether the scale is faulty?

If you think about it, this problem is isomorphic to a known problem I wrote about before:

You have N ≥ 2 identical-looking coins. All but one of them are real and weigh the same. One coin is fake and is either lighter than the real ones or heavier than the real ones. You also have a normal balance scale. What is the smallest number of weighings you need in order to figure out whether the fake coin is lighter or heavier?

To make things more interesting let’s mix the problems up.

You have N > 2 identical-looking coins. All but one of them are real and weigh the same. One coin is fake and is lighter than the real ones. You also have M > 1 identical-looking balance scales. All but one of them are normal and one is faulty. The faulty scale differs from a normal one in reversing the sense of unbalanced weighings—it shows a lighter pan as heavier and vice versa (but still shows equal-weight pans as weighing the same). What is the smallest number of total weighings needed to figure out which scale is faulty?

Share:Facebooktwitterredditpinterestlinkedinmail

How Many Triangles?

The following problem was at a 2016 entrance test for the MIT PRIMES STEP program.

I drew several triangles on a piece of paper. First I showed the paper to Lev and asked him how many triangles there were. Lev said 5 and he was right. Then I showed the paper to Sasha and asked him how many triangles there were. Sasha said 3 and he was right. How many triangles are there on the paper? Explain.

The intended answer was 8: there were 5 triangles on one side of the paper and 3 on the other.

Most of the students didn’t think that the paper might be two-sided, but they came up with other inventive ideas. Below are some of their pictures, and I leave it to you to explain why they work. All the students who submitted these pictures got a full credit for this problem on the test.

Example 7Example 5Example 4Example 3Example 1Example 2Example 6
Share:Facebooktwitterredditpinterestlinkedinmail

Alexander Shapovalov Crosses a River

Alexander Shapovalov is a prolific puzzle writer. He has a special webpage of his river-crossing puzzles (in Russian). Here is one of these puzzles.

Three swindlers have two suitcases each. They approach a river they wish to cross. There is one boat that can carry three objects, where a person or a suitcase counts as one object. No swindler can trust his suitcase to his swindler friends when he is away, but each swindler doesn’t mind his suitcases left alone at the river shore. Can they cross the river?

Share:Facebooktwitterredditpinterestlinkedinmail