Archive for the ‘Sequences’ Category.

Happy 2025!

Do you know that 2025 is a composite, deficient, evil, odd, square, and powerful number? I collect properties of numbers at my Number Gossip website, where you can also find detailed definitions of these terms. Provocatively, 2025 is also an apocalyptic power, meaning that 2 to the power of 2025 contains 666 as a substring.

Recently, Tamas Fleischer sent me an email discussing additional fascinating properties of 2025. While I am slowly deciding whether to add them to my database, there is some urgency in posting these properties in anticipation of the coming year. Here’s the material from Tamas, retold in my own words.

Out of the properties mentioned earlier, the square property is the only rare one. On my website, I define a property as rare if fewer than 100 numbers below 10,000 possess it. Square numbers barely make the cut. But 2025 is not just a square number—it is the square of a triangular number. If you remember the formula for the sum of cubes of the first n natural numbers, the result is (n(n+1)/2)2, which is the square of the nth triangular number. Thus, 2025 is the sum of the cubes of all one-digit numbers.

Additionally, 2025 is the product of 25 and 81. My website notes an intriguing property shared by 25 and 2025: both remain square numbers when all their digits are incremented by 1. For example, 25 becomes 36, and 2025 becomes 3136, both of which are squares. Moreover, 25 is the smallest such number, and 2025 is the second smallest. What my website does not mention is that their square roots exhibit a similar pattern. The square roots of 25 and 2025 are 5 and 45, respectively. When their digits are incremented by 1, the results are 6 and 56, the square roots of 36 and 3136, respectively. The original and incremented squares and their square roots are tied together in a surprising way.

2025 also shares an interesting property with 81. Both are square numbers with an even number of digits and if you split the digits in half and sum the halves, the result is the square root of the original number. For 81, splitting into 8 and 1 gives 8 + 1 = 9, which is the square root of 81. Similarly, for 2025, splitting into 20 and 25 gives 20 + 25 = 45, the square root of 2025. Intriguingly, 81 is the smallest number with this property, and 2025 is the second smallest.

Thank you, Tamas, and Happy New 2025 to everyone!


Share:Facebooktwitterredditpinterestlinkedinmail

The Pinocchio and Oihcconip Sequences

What is base 3/2? One of the ways to define such a base is to think of it in terms of exploding dots. What the heck are exploding dots? They are explained and popularized by James Tanton in his YouTube videos.

Essentially, “exploding dots” is a machine made of a row of boxes with rules describing how the dots loaded into the machine explode. As an example, let me describe the 1←2 machine, which corresponds to base 2. We load N dots into the rightmost box. Whenever there are 2 dots in one box, they explode into 1 dot in the box to the left.

Exploding dots base 2

For example, to write 5 in base 2, we would first load 5 dots in the rightmost box, as in the figure above. Then each group of 2 dots in the rightmost box would explode, and for each group, 1 dot would appear in the box to the left. Finally, the 2 dots in the second box would explode into 1 dot into the next box to the left. By reading the number of dots from left to right, we get 101, which is 5 in base 2.

The interesting thing here is that there is no reason this model should be exclusive to integer bases. Suppose our rule is that 3 dots explode into 2 dots in the box to the left. Such a rule is called the 2←3 machine, and it corresponds to base 3/2. To represent 5 in this base, we load 5 dots into the rightmost box, then we use the exploding rule shown in the figure below. Using this machine, 5 is represented in base 3/2 as 22.

Exploding dots base 3 over 2

The figures were made by my junior PRIMES STEP group, in the 2017-2018 academic year, for our paper, Variants of Base 3 Over 2.

But, in this post, I want to discuss a different paper from the same academic year. With my senior PRIMES STEP group, we wrote a paper On Base 3/2 and its Sequences. A shorter version which includes a tribute to John Conway, appeared in The Mathematical Intelligencer.

Speaking of John Conway, he liked inventing new sequences, especially ones with unusual behaviors. One of his hobbies was tweaking the Fibonacci rule to create new sequences, which he called Fibs. For example, the sorted Fibs sequence starts the same as the Fibonacci sequence with 0 and 1. To calculate the next term, we add the two previous terms and sort the digits in non-decreasing order. In base 10, this sequence is A069638: 0, 1, 1, 2, 3, 5, 8, 13, 12, 25, 37, 26, …. It is known that this sequence is periodic with a maximum value of 667.

With my senior PRIMES STEP group, we studied analogs of this sequence in base 3/2. We begin with the sorted Fibs sequence fn with the same two initial values that start the Fibonacci sequence: f0 = 0 and f1 = 1. To calculate fn+1, we add fn-1 and fn in base 3/2 and sort the digits in non-decreasing order. It follows that the numbers in the sequence are written as several ones followed by several twos. Unlike base 10, the sequence is not periodic and grows indefinitely: 0, 1, 1, 2, 2, 12, 12, 112, 112, 1112, 1112, 11112, …. In recognition of the constant growth of this Fibs sequence, we call it the Pinocchio sequence.

Obviously, you can start the sorted Fibs sequence with any two numbers. But we proved an interesting theorem which stated that any sorted Fibs sequence eventually turns into either the tail of the Pinocchio sequence or the 3-cycle 112, 1122, 1122.

However, we didn’t stop there. There are two natural ways to sort the digits of a number, in increasing or decreasing order. Naturally, there is another type of sequences worth considering, in which the digits are sorted in non-increasing order. We called such sequences the reverse sorted Fibs.

We defined the reverse sorted Fibs sequence rn in base 3/2 as follows. To calculate rn+1, we add rn-1 and rn in base 3/2 and sort the digits in non-increasing order, ignoring zeros. It follows that after the initial terms, the terms of such a sequence are represented with several twos followed by several ones. We call the reverse sorted Fibs that start in a similar way to the Fibonacci sequence with r0 = 0 and r1 = 1, the proper reverse sorted Fibs. Here are several terms of the proper reverse sorted Fibs: 0, 1, 1, 2, 2, 21, 21, 221, 2211, 221, 221, 2211, 221, 221, 2211, …. This sequence becomes cyclic, starting from r7.

We also found one reverse sorted Fibs growing indefinitely: 2211, 2211, 22211, 22211, 222211, 222211, and so on. We proved that any reverse sorted Fibs sequence eventually turns into either this sequence or a 3-cycle sequence: 221, 221, 2211. The similarity between the sorted Fibs and the reverse sorted Fibs surprised us. Up to the initial terms, they both have exactly one sequence which grows indefinitely and one 3-cycle. To emphasize this similarity, we reversed the word Pinocchio and named this growing reverse Fibs sequence the Oihcconip sequence.

Now I need to figure out how to pronounce the name of this new sequence.

Share:Facebooktwitterredditpinterestlinkedinmail

My Vision for Number Gossip

I run Number Gossip, where you can input a number and get some of its cute properties. For example, the number 63 is composite, deficient, evil, lucky, and odd. In addition, it has a unique property: 63 is the smallest number out of two (the other being 69), such that the common alphabetical value of its Roman representation is equal to itself. Indeed, the Roman representation of 63 is LXIII, where L is the 12th digit, X is the 24th, and I is the 9th. Summing them up, we get 12 + 24 + 9 + 9 + 9 = 63 — the number itself.

I have a list of about 50 properties of numbers that my program checks. Each number greater than one gets at least four properties. This is because I have four groups of properties that cover all the numbers. Every number is either odd or even. Every number is either deficient, perfect, or abundant. Every number greater than one is either prime or composite. Every number is either evil or odious.

In addition, I collect unique number properties. During the website’s conception, I decided not to list all possible unique properties that I could imagine but to limit the list to interesting and unusual properties. My least favorite properties of numbers are the ones that contain many parameters. For example, 138 is the smallest number whose base 4 representation (2022) contains 1 zero and 3 twos. If you are submitting a number property to me, keep this in mind.

Some parameters are more forgiving than others. For example, 361 is the smallest number which is not a multiple of 9, whose digital sum coincides with the digital sum of its largest proper divisor. In more detail, the digital sum of 361 is 3 + 6 + 1 = 10, while 19, the largest divisor of 361, has the same digital sum of 10. In this case, the parameter 9 is special: for a multiple of 9, it is too easy to find examples that work, such as 18, 27, and so on. Sequence A345309 lists numbers whose digital sum coincides with the digital sum of their largest proper divisor. The first 15 terms of the sequence are divisible by 9, and 361 is the smallest term that is not divisible by 9.

By the way, another number that is buried deep in a sequence is 945, which is the smallest odd abundant number. There are 231 abundant numbers smaller than 945; all of them are even.

A more recent addition to my collection is related to the sequence of distended numbers (A051772). Distended numbers are positive integers n for which each divisor of n is greater than the sum of all smaller divisors. It is easy to see that for distended numbers, all sums of subsets of divisors are distinct. The opposite is not true: 175 is the smallest number, where all sums of subsets of its divisors are distinct, but the number itself is not distended.

It is difficult to find special properties for larger numbers, so I am less picky with them. For example, 3841 is the number of intersections of diagonals inside a regular icosagon. The word icosagon hides a parameter, but I still like the property.

I invite people to submit number properties to me. And I received many interesting submissions. For example, the following oxymoronic property was submitted by Alexey Radul: 1 is the only square-free square.

The numbers below 200 that still lack unique properties are 116, 147, 155, 162, 166, 182, and 194. The earliest century that doesn’t have unique number properties ranges between 7000 and 7100. The next ones are 8000–8100 and 9100–9200. By the way, my site goes up to ten thousand.

I also have a lot of properties in my internal database that I haven’t checked yet. I am most interested in the proof of the following property: 26 is the only number to be sandwiched between any two non-trivial powers.

Share:Facebooktwitterredditpinterestlinkedinmail

Seven, Ace, Queen, Two, Eight, Three, Jack, Four, Nine, Five, King, Six, Ten

Seven, Ace, Queen, Two, Eight, Three, Jack, Four, Nine, Five, King, Six, Ten

To prepare for this magic trick, take all the spades out of a deck and place them in the following order: seven, ace, queen, two, eight, three, jack, four, nine, five, king, six, and ten. Turn the assembled deck face down, so that the seven is on top. Now you are ready to do the trick.

Magic trick. Transfer the top card to the bottom of your deck and deal the new top card face-up on the table. Repeat this process until all the cards are dealt. And — abracadabra — the cards are dealt in order.

I showed this trick to my grandchildren, and they decided to reproduce it. They tried to calculate where each card goes, without too much success. Then my son showed them another trick: how to arrange the cards without calculation. He started building his arranged deck from the end of the trick with all the cards in order face-up on the table with the king on top. He took the king and put it face-down into his hand. Then he repeated the following procedure until all the cards were in his hand: He took the next card from the table and put it face-down on top of the one in his hand. Then he moved the card from the bottom of his deck to the top. And — abracadabra — the cards are arranged correctly for the trick.

Next time, I should ask my grandkids to show this trick with the whole deck.

The trick with the whole deck

Share:Facebooktwitterredditpinterestlinkedinmail

A Card-Dealing-Trick Sequence: Persistimis Possessiamo

Pete McCabe presented his trick, Persistimis Possessiamo, at the Gathering for Gardner in 2018.

Trick. Pete asked for two volunteers, let’s call them Alice and Bob. Bob took out his favorite card, the Queen of Spades, from the deck and put it back following Pete’s instructions. Then Alice dealt the deck alternatively into two piles, Bob’s and hers, starting with Bob’s. Alice took her pile and repeated the same process several times until only one card was left. And, abracadabra: it was Bob’s chosen Queen of Spades.

Pete McCabe is interested in scripting magic. In his blog post, Scripting Magic for Zoom, he describes ways to make sure that Bob inserts his card into the 22nd place without using sleight of hand, but rather using a theatrical script which makes the process magical rather than mathematical. The magic part is related to the fact that the number of letters in the trick title, Persistimis Possessiamo, is 22. As a result, he can do the trick on Zoom without ever touching the cards.

Once a magician knows how to manipulate the volunteer to insert the card into a specific place in the deck, the trick becomes deterministic and works on any-sized deck, as long as the magician can calculate where the card goes. We will now perform this calculation.

We denote our card-inserting sequence as a(n), where n is the size of the deck, and a(n) is the place where the card is inserted. For starters, a(2n+1) = a(2n): when the size of the deck is odd, the last card during the first deal goes to Bob, and doesn’t effect the other deals. Now, we obviously have a recursion. First, we observe that in order to end up in Alice’s pile after the first deal, Bob’s chosen card should occupy an even-numbered place. Suppose we start with 2n cards. After the first deal, Bob’s chosen card is in the place number a(2n)/2 from the bottom in Alice’s pile. That means, the card is in the place number n + 1 − a(2n)/2 from the top. This gives us an equation: a(n) = n + 1 − a(2n)/2, which is equivalent to a recursion: a(2n) = 2(n + 1 − a(n)).

Given that each element of the sequence a(n) is doubled, we are only interested in even-indexed values. Consider b(n) = a(2n) = a(2n+1). Then b(1) = 2, and the recursion for b is b(n) = 2(n + 1 − b⌊n/2⌋).

From here, we get the sequence, which is now sequence A350652 in the OEIS:

2, 2, 4, 6, 8, 6, 8, 6, 8, 6, 8, 14, 16, 14, 16, 22, 24, 22, 24, 30, 32, 30, 32, 22, 24, 22, 24, … .

Share:Facebooktwitterredditpinterestlinkedinmail

The Top Fifty Largest Numbers that Start a Sequence in the OEIS

My son, Alexey Radul, wrote a program that finds the largest numbers to start a sequence in the Online Encyclopedia of Integer Sequences (OEIS). To my surprise, the top ten are all numbers consisting of ones only. The largest number is 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111: a number with 128 ones. The sequence is A095646: a(n) is 128 written in base n. It starts with base 1, or more precisely, the unary expansion, which indeed requires 128 ones to express the number 128.

I decided to expand my top list to 50. Again, most of the numbers are bunches of ones: 48 out of the top 50 numbers are unary expansions of numbers 81 through 128. There are two more numbers in the top 50 that are different and belong to awesome sequences.

The first awesome sequence is sequence A033290: Ten consecutive primes in arithmetic progression. It starts with the number 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067229719, which has 93 digits. This number takes 37th place on my list.

The second awesome sequence is sequence A291042: One powerful arithmetic progression with a nontrivial difference and maximal length. The sequence corresponds to a cool puzzle that appeared in the American Mathematical Monthly in 2000. The question was, “What is the length of the longest non-constant arithmetic progression of integers with the property that the kth term is a perfect kth power?” The answer is 5. John P. Robertson proved that such progression can’t have 6 terms and provided an example of a sequence with 5 terms, which is the sequence in the OEIS.

Here is how to construct this sequence. Start with an arithmetic progression 1, 9, 17, 25, 33, and multiply each term by 32453011241720: the result is also an arithmetic progression. The first term is trivially a first power. The second term is 32653011241720 = (31351511121710)2 and a square. The third term is 32453011241721 = (38510118177)3 and a cube. The fourth term is 32453211241720 = (3658116175)3 and a fourth power. The fifth term is 32553011251720 = (3556115174)5 and a fifth power.

The sequence starts with the number 10529630094750052867957659797284314695762718513641400204044879414141178131103515625. It has 83 digits, and it takes 48th place on my list.

Share:Facebooktwitterredditpinterestlinkedinmail

1 is the Only Square-free Square

How can a square be square-free? In order for square-freeness to be interesting, it must be, and is, defined in terms of divisibility by non-trivial squares. So to create this particular mathematical oxymoron, one just needs a trivial square, namely 1.

I collect exciting properties of integers on my Number Gossip website. Did you know that forty is the only number whose letters appear in alphabetical order when written in English? Or that the largest amount of money one can have in US coins without being able to make change for a dollar is 119 cents?

Recently I wrote about a weird occasion that motivated me to search for new properties. Here is a sample of some amusing new updates.

  • 68 is the last 2-digit string to appear in the decimal expansion of pi.
  • 77 is the smallest number n such that the smallest possible number of multiplications required to compute x to the n-th power is by 1 fewer than the number of multiplications obtained by Knuth’s power tree method.
  • 195 is the smallest groupless number; that is, it is the smallest number n whose set of pairwise products up to n cannot be completed to the multiplication table of a finite group of order n (submitted by Andrew Pollington).
  • Digits in the Morse code can be represented in base 3 with 1 for a dot and 2 for a dash; Morse-coded zero in base 3 is evaluated to 242.
  • 247 is the smallest possible difference between two integers that together contain each digit exactly once.
  • An equilateral triangle, whose area and perimeter are equal, has an area (and perimeter) equal to the square root of 432.
  • 480 is the smallest number such that when written in hexadecimal (1E0), looks like another number in scientific E notation.
  • 510 is the smallest number that is not a palindrome, even after removing trailing zeros, which is divisible by its reversal. It is trivial that palindromes with trailing zeros are divisible by their reversal, making this the first interesting case.
  • 960 is the number of different starting positions in the Fischer random chess game. The Fischer random chess was invented, not surprisingly, by Bobby Fischer. The starting position is created like this: White’s non-pawn pieces are placed randomly on the first row so that the two bishops are on different colored squares, and the king is between the rooks to allow to castle. The white pawns are placed on the second row as usual, and the black pieces are placed symmetrically with respect to the horizontal line symmetry.
  • 1000 is the smallest number whose scientific notation (1E3) is shorter than its decimal representation.
  • 1084 is the smallest number whose American English name contains all five vowels in order.
  • 1642 is the smallest number n without zeros so that for each digit d of n, the number 2d is a substring of n.
  • 1659 is the smallest number n such that its Roman numeral occupies the n-th position when all Roman numerals are sorted in the lexicographic order.
  • 2187 is the smallest compact number: numbers that can be expressed more compactly using their prime factorization than their decimal expansion, where multiplication and power contribute one character (2187 is written as 3^7).
  • 2500 is the smallest number n whose distinct prime factors are exactly the same as the distinct prime factors of each of the numbers obtained by deleting any single digit of n.
  • 8542 is the largest integer that can’t be represented as a sum of squares of numbers whose reciprocals sum to 1. This is a recent (2018) result by Max Alekseyev.
  • 8719 is the smallest number n such that the smallest possible number of multiplications required to compute x to the n-th power is by 2 fewer than the number of multiplications obtained by Knuth’s power tree method.
Share:Facebooktwitterredditpinterestlinkedinmail

Continue the Sequence: 742, …

This is the sequence of numbers n such that 3 times the reversal of n plus 1 is the number itself. In other words, n = 3*reversal(n)+1. For example, 742 = 3*247+1. In fact, 742 is the smallest number with this property. How does this sequence continue, and why?

Share:Facebooktwitterredditpinterestlinkedinmail

Free Fibonacci Sequences

John Conway likes playing with the Fibonacci sequence. He invented many new sequences using the following trick. The next number in the sequence is the sum of the two previous number adjusted in some way. Free Fibonacci sequences were invented this way. Here is the recurrence for an n-free Fibonacci sequence: the next number in the sequence is the sum of the previous two numbers divided by the highest possible power of n.

Let us calculate a 2-free Fibonacci sequence starting with 5 and 4: 5, 4, 9, 13, 11, 3, 7, 5, 3, 1, 1, 1, …. I leave it to the reader to show that any 2-free sequence ends with a cycle of length one.

Let us try a 3-free Fibonacci sequence starting with 5 and 6: 5, 6, 11, 17, 28, 5, 11, 16, 1, 17, 2, 19, 7, 26, 11, 37, 16, 53, 23, 76, 11, 29, 40, 23, 7, 10, 17, 1, 2, 1, 1, 2, and so on. We are now in the cycle of length 3. Is this always the case? Not quite. If there is a 1-1-2 cycle there should be a 2-2-4 cycle, or any cycle kk-2k, where k is coprime with 3. But the question remains: does it always end in a cycle of length 3?

I published a paper Free Fibonacci Sequences with Brandon Avila. We conjecture that a 3-free Fibonacci sequence always ends in a cycle and support this conjecture with a probabilistic argument. We were amused by how the behavior changes when we move to 4-free Fibonacci sequences. It seems that in this case sequences never cycle. We were even more amused when we moved to 5-free Fibonacci sequences and discovered that the behavior changes again.

When n equals 5 there are some sequences that cycle. Can you find the cycles? There are also sequences that grow indefinitely and we do not need a probabilistic argument to prove that. Consider Lucas numbers: 2, 1, 3, 4, 7, 11, and so on. This is a Fibonacci-like sequence that never has a term divisible by 5. Thus Lucas numbers form a 5-free Fibonacci sequence. We made a probabilistic argument that most of the starting terms converge eventually to a Lucas-like sequence that grows indefinitely because there are no terms divisible by 5.

What happens for larger n? We didn’t manage to find any cycles there. Would you like to try?Share:Facebooktwitterredditpinterestlinkedinmail

ApSimon’s Mints

Hugh ApSimon described the following coin puzzle in his book Mathematical Byways in Ayling, Beeling and Ceiling.

New coins are being minted at n independent mints. There is a suspicion that some mints might use a variant material for the coins. There can only be one variant material: fake coins weigh the same independently of the mint. The weight of genuine coins is known, but the weight of fake coins is not. There is a machine that can precisely weigh any number of coins, but the machine can only be used twice. You can request several coins from each mint and then perform the two weighings so that you can deduce with certainty which mints produce fake coins and which mints produce real coins. What is the minimum total of coins you need to request from the mints?

I will follow ApSimon’s notation. Suppose Pr and Qr is the number of coins from the mint r used in the first and the second weighing correspondingly. That is, we are minimizing Σmax(Pr,Qr). (All my summations are over all the mints. I skip the summation limits because it is difficult to write math in html.) Let us denote by W the weight of the genuine coin and by W(1 + ε) the weight of the fake coin. We do not know ε, except that it is not zero.

Let dr be either 0 or 1, depending on what material the r-th mint uses. Thus, the coin from the r-th mint weighs W(1 + drε). We know the results of these two weighings and the weight of the genuine coin. Therefore, we can calculate the following two values: a = ΣPrdrε and b = ΣQrdrε.

It is clear that we need to request at least one coin from each mint and use it in at least one weighing: Pr + Qr > 0. If both sums a and b are zero, then all the mints are producing genuine coins. Neither of the two values gives us much information as we do not know ε. We can get rid of ε by dividing a by b.

There are 2n − 1 combinations of possible answers: these are subsets of the set of mints producing fake coins given that there is at least one. Thus we need to select numbers Pr and Qr, so that a/b produces 2n − 1 possible answers for different sets of values of dr.

Let us consider cases in which the total number of mints is small. If there is one mint we can take one coin and we won’t even need a second weighing. For two mints we need one coin from each mint for a total of 2. For three mints, one coin from each mint is not enough. I leave this statement as an exercise. It is possible to test three mints with four coins: one each from the first and second mints and two from the third mint. The coins from each mint for the first and second weighings are (0,1,2) and (1,1,0) respectively.

To prove that this works we need to calculate (d2 + 2d3)/(d1 + d2) for seven different combinations of dr. I leave this as an exercise.

This puzzle seems to be very difficult. We only know the answer if the number of mints is not more than seven. The corresponding sequence A007673 in the OEIS is: 1, 2, 4, 8, 15, 38, 74. It is possible to give bounds for this sequence, but they are so far apart. The lower bound is n. And the ApSimon’s book offers a construction for two weighings were Pr = r! and Qr = 1.

You can try to find a better construction, or you can try calculating more terms of the sequence. You can also read more about this problem in my short paper Attacking ApSimon’s Mints.

I do not want to leave the readers with the puzzle that might end up being intractable. So I suggest the following easy puzzle. Solve the ApSimon’s Mints problem assuming that the weight of the fake coin is known.Share:Facebooktwitterredditpinterestlinkedinmail