## Fibonacci Tricks

Consider the following Fibonacci trick. Ask your friends to choose any two integers, a and b, and then, starting with a and b, ask them to write down 10 terms of a Fibonacci-like sequence by summing up the previous two terms. To start, the next (third) term will be a+b, followed by a+2b. Before your friends even finish, shout out the sum of the ten terms, impressing them with your lightning-fast addition skills. The secret is that the seventh term is 5a+8b, and the sum of the ten terms is 55a+88b. Thus, to calculate the sum, you just need to multiply the 7th term of their sequence by 11.

If you remember, I run a program for students in grades 7 through 9 called PRIMES STEP, where we do research in mathematics. Last year, my STEP senior group decided to generalize the Fibonacci trick for their research and were able to extend it. If n=4k+2, then the sum of the first n terms of any Fibonacci-like sequence is divisible by the term number 2k+3, and the result of this division is the Lucas number with index 2k+1. For example, the sum of the first 10 terms is the 7th term times 11. Wait, this is the original trick. Okay, something else: the sum of the first 6 terms is the 5th term times 4. For a more difficult example, the sum of the first 14 terms of a Fibonacci-like sequence is the 9th term times 29.

My students decided to look at the sum of the first n Fibonacci numbers and find the largest Fibonacci number that divides the sum. We know that the sum of the first n Fibonacci numbers is F_{n+2} – 1. Finding a Fibonacci number that divides the sum is easy. There are tons of cute formulas to help. For example, we have a famous inequality F_{4k+3} – 1 = F_{2k+2}L_{2k+1}. Thus, the sum of the first 4k+1 Fibonacci numbers is divisible by F_{2k+2}. The difficult part was to prove that this was the largest Fibonacci number that divides the sum. My students found the largest Fibonacci number that divides the sum of the first n Fibonacci numbers for any n. Then, they showed that the divisibility can be extended to any Fibonacci-like sequence if and only if n = 3 or n has remainder 2 when divided by 4. The case of n=3 is trivial; the rest corresponds to the abovementioned trick.

They also studied other Lucas sequences. For example, they showed that a common trick for all Jacobsthal-like sequences does not exist. However, there is a trick for Pell-like sequences: the sum of the first 4k terms (starting from index 1) of such a sequence is the (2k + 1)st term times 2P_{2k}, where P_{n} denotes an nth Pell number.

You can check out all the tricks in our paper Fibonacci Partial Sums Tricks posted at the arXiv.

Share:
## Leave a comment