Archive for April 2023

Don’t Read This Sentence

Sometimes I mess with my students. Recently, I gave them the following problem for homework.

Puzzle. Don’t read this sentence.

This problem is a paradox: students can’t know not to read it unless they read it! I expected my students to explain the paradox, and a couple of them did. But, most of them provided me with an infinite stream of entertainment. Here are some of their answers divided into categories, starting with the apologizing ones, and there were a lot of those:

  • Oopsie.
  • Too late?
  • My apologies.

I wasn’t surprised by the apologies, as this problem is intended to be intimidating. However, other students tried to wiggle out of it:

  • Next time, I will ask my parents to read my homework to me.
  • A person named Don’t read, in the past tense, “this sentence”. I read this sentence, too!
  • I happen to have conveniently forgotten English, and it cannot be proven otherwise.

Yet other students decided to rebel:

  • Why not?
  • I didn’t.
  • You just lost your game.
  • I will never read anything again, as it says, “Don’t read.”

Karma is a boomerang, and this problem got me into a pickle. One of the most brilliant and funny solutions possible was to leave the answer box blank, implying that the sentence wasn’t read. However, how would I grade this? What if they just skipped the problem? I decided to err on the students’ side and gave full credit for an empty answer box.

A couple of students made a point of pretending they didn’t read the sentence:

  • Which sentence?
  • I see an answer box, but there’s no problem.

But I saved the best for last. My favorite answer was the following:

  • Don’t read this answer.
Share:Facebooktwitterredditpinterestlinkedinmail

A Chess Puzzle

Puzzle. Alice and Bob play the following game on a regular chessboard, where all the pieces move according to the standard rules of chess. Alice has a king, and Bob has a knight. They would place their pieces on the chessboard without attacking each other. Alice starts, and they alternate moves. Alice loses if the knight checks or all available moves place her under the knight’s attack. For which initial positions of the pieces is Bob guaranteed a win?

Share:Facebooktwitterredditpinterestlinkedinmail

Wonderful John Conway

Once, I was in Princeton and attended a lecture by Persi Diaconis. John Conway was also there. During his presentation, Persi mentioned John by referring to him as Wonderful John Conway. John couldn’t resist and said, “Thank you, you are one of not many people who remember my real first name.”

Share:Facebooktwitterredditpinterestlinkedinmail

Touching Eternity

Every summer when I was little, my mom would take us on vacation to a rusty village far away from Moscow. I do not remember much, mostly just cows grazing on the grassy fields. However, one particular memory is really special and vivid.

I was five years old, tired of another day in the fields, lying in bed about to fall asleep. I started counting. I do not remember what. I am sure it wasn’t sheep; it could have been cows. Then, I got bored of small numbers and jumped to a thousand, counting from there. Then, I jumped to another even bigger number. After a few jumps, I realized that I could always add one to a previous number. The number of numbers must be infinite. Wow!

I will always remember the feeling I had. It was like touching eternity, being one with the whole universe.

You can imagine why I became a mathematician. From time to time, I am touching eternity and getting paid for the bliss.

Share:Facebooktwitterredditpinterestlinkedinmail

Escher’s Subgroups

Escher's Fishes

I use Escher’s tessellations to teach wallpaper groups. Escher is the best painter among mathematicians and the best mathematician among painters. His fame helps energize my class. Plus, he has so many beautiful drawings to choose from.

However, there is another layer to his tessellations. Many paintings are not just a study in wallpaper groups but also in group-subgroup pairs. For example, consider these red/gray/black fishes on the left. There are three distinct points where three different reflection lines intersect. The first point is where three black fishes kiss each other. The other two points correspond to gray and red fish kisses. In orbifold notation, this symmetry group is *333.

But, the same drawing has another symmetry group. We just need to ignore color. That is, we consider all the fishes to be the same. In this case, our three distinct points where three reflection lines intersect become the same point: the point where fishes kiss, regardless of their color. The new symmetry group has an additional element: a 120-degree rotation where three fins of three different-colored fishes touch each other. Thus, the new symmetry group is 3*3.

Escher created a lot of examples of groups and their subgroups using color. But, sometimes, he was more subtle. In one of my previous posts, The Dark Secret of Escher’s Shells, I discussed my favorite Escher’s plane tessellation. In that drawing, the second group appears when we ignore the markings on one of the dark shells.

Here is another spectacular example of a group and subgroup, a tessellation of a hyperbolic plane with angels and devils. Do you see two different symmetry groups in the painting?

Escher's Angels

Share:Facebooktwitterredditpinterestlinkedinmail

Noisy Violinists

My PRIMES project last year, done with Rich Wang, was about violinists living in a hotel and being annoyed with each other. The project was suggested by Darij Grinberg and based on the following puzzle.

Puzzle. Consider a hotel with an infinite number of rooms arranged sequentially on the ground floor. The rooms are labeled from left to right with consecutive integers. A finite number of violinists are staying in the hotel with no more than one violinist in a room. Each night, two violinists staying in adjacent rooms get fed up with each other’s playing, and both request different rooms from the manager. The manager moves one of them to the nearest unoccupied room on the left and the other to the nearest unoccupied room on the right. This keeps happening every night as long as there are two violinists in adjacent rooms. Prove that this relocation will stop after a finite number of nights.

The project was not to solve the puzzle, and I won’t describe the solution, leaving it to my readers to ponder on their own. The project was to take this puzzle and see what we could discover. The relocation process in the puzzle is reminiscent of chip-firing, with a few differences.

Let me explain chip-firing in terms of violinists. The starting position would allow any number of violinists per room. Each night, two violinists in the same room will get annoyed with each other and request new rooms. There might be more violinists in that same room, but only two at a time are really annoyed. The manager will put one of them into the room on the left and the other into the room on the right, regardless of how crowded the rooms are.

In the chip-firing example, violinists always move to the next room. In our puzzle, they might need to go miles to a new room. And carry their luggage with them!

The original puzzle above implies that after several nights the relocations will stop, and violinists will enjoy the hotel in peace. This peaceful configuration is called a final state. Interestingly, depending on the order in which violinists are getting annoyed with each other, a starting configuration can result in different final states.

For example, consider the smallest interesting case, where only 3 violinists are staying in a hotel. We use 1 to describe a noisy room with a violinist and 0 to describe an empty room. Suppose the starting configuration is 0011100, where we ignore rooms far away from the noise. Depending on which two rooms have the complaining violinists on the first night, we can end up with a final state 0101001 or 1001010.

Initially, in the project, we looked at final states where we start with N violinists in consecutive rooms. We call such a configuration an N-clusteron. The example above describe the final states of a 3-clusteron. Here is an exercise for the reader: prove that in the final state, the gaps between occupied rooms have to be 1 or 2.

A final state can be described by the index of the leftmost occupied room and the sequence of gaps between occupied rooms. In the exercise above, it is easy to prove that the gaps must be size 1 or 2. In our paper, we proved a more refined statement: any final state has exactly one gap of size 2. Thus, a final state has two parameters: the index of the leftmost room and the location of the size 2 gap. For example, this means that in a final state, the span between the leftmost and the rightmost rooms, inclusive, is 2N.

As we continued exploring final states, we discovered something else. But first, I need to define the shadow of a final state. Let’s denote an occupied room with a one and an empty room with a zero. Then a final state corresponds to an infinite sequence of zeros and ones. But the interesting part of the final state is not infinite: it is a subsequence between the leftmost and rightmost ones, inclusive. We call this subsequence the shadow of the final state. In other words, the shadow describes the final state up to a translation and is completely defined by one parameter: the location of the 2-gap. In our example of a 3-clusteron, there are 2 final states with 2 distinct shadows. For larger clusterons, the situation is more interesting. There are 5 different possible final states for a 4-clusteron but only three distinct shadows. We discovered the following conjecture.

Conjecture. If we start from an N-clusteron and at each state uniformly select a move to perform from all possible moves, then the shadows of the final states are equiprobable.

You can find more details in our paper Ending States of a Special Variant of the Chip-Firing Algorithm. This conjecture is beautiful as it shows that there are hidden symmetries in this process of appeasing the fussy violinists. We didn’t prove this conjecture. Can you do it?

Share:Facebooktwitterredditpinterestlinkedinmail