Archive for October 2012

2012!

In what base does 2012! have more trailing zeros: base 15 or 16?

Explain why the result shouldn’t be too surprising.

Share:Facebooktwitterredditpinterestlinkedinmail

Why I Eat

I would like to report on my weight loss progress. Last time I added two new habits, walking my toy dog every day, and drinking more water from the enticing cute bottles I bought.

I named my stuffed dog Liza and I walk with her every day. I didn’t expect immediate weight loss due to this new regime, because my first goal was to get out of the house every day, even if only for two seconds. The next step will be to increase walking time to ten minutes.

Drinking a lot of water doesn’t work well. I spend too much time looking for bathrooms and panicking that I will not make it. I like the idea of drinking a lot of water, but I am not sure I can hold to it, if you understand what I mean.

Since taking on this challenge, I’ve gained two habits, but I haven’t lost a pound.

Now I’m upping my game. Below is my analysis of why I eat. When I eat, I believe that I am hungry. But looking at this more objectively I think this is not always the case: sometimes there are other reasons. I am listing these other reasons so I can fight them face-to-face. Here we go:

  • I eat to finish what is on my plate. My mom lived through World War II in Moscow, and instilled in me a terrible guilt when I throw away food.
  • I eat extra when I do not know when my next meal is. I experienced extreme hunger in my childhood, so I try to prevent ever having that terrible feeling again.
  • I can’t resist free food. I do not feel comfortable with my financial situation, so saving money gives me an extra push to eat even when I’m not hungry.
  • I procrastinate by eating. When I am facing a chore I don’t really want to do, I delay it by eating.
  • I crave sugar. It used to be worse.
  • I have a problem with delicious food. I think that deep inside I feel that life was unfair to me and this piece of tiramisu will be a small bright spot in my usually rainy life. Therefore I need to grab it and gobble it down before it disappears.

Hmm. That was painful to write. My psychoanalyst taught me that pain means I am on the right track.

Share:Facebooktwitterredditpinterestlinkedinmail

Three out of Three

Davidson Institute for Talent Development announced their 2012 Winners. Out of 22 students, three were recognized for their math research. All three of them are ours: that is, they participated in our PRIMES and RSI programs:

  • David Ding’s project, “Infinitesimal Cherednik Algebras of gln,” came out of his participation in the PRIMES program.
  • Sitan Chen’s project, “On the Rank Number of Grid Graphs,” came out of his participation in the RSI program.
  • Xiaoyu He’ project, “On the Classification of Universal Rotor-Routers,” came out of his participation in the PRIMES program.

I already wrote about Xiaoyu’s project. Today I want to write about Sitan’s project and what I do as the math coordinator for RSI.

RSI students meet with their mentors every day and I meet with students once a week. On the surface I just listen as they describe their projects. In reality, I do many different things. I cheer the students up when they are overwhelmed by the difficulty of their projects. I help them decide whether they need to switch projects. I correct their mistakes. Most projects involve computer help, so I teach them Mathematica. I teach them the intricacies of Latex and Beamer. I explain general mathematical ideas and how their projects are connected to other fields of mathematics. I never do their calculations for them, but sometimes I suggest general ideas. In short, I do whatever needs to be done to help them.

I had a lot of fun working with Sitan. His project was about the rank number of grid graphs. A vertex k-ranking is a labeling of the vertices of a graph with integers from 1 to k so that any path connecting two vertices with the same label passes through a vertex with a greater label. The rank number of a graph is the minimum possible k for which a k-ranking exists for that graph. When Sitan got the project, the ranking numbers were known for grid graphs of sizes 1 by n, 2 by n, and 3 by n. So Sitan started working on the ranking number of the 4 by n graph.

His project was moving unusually fast and my job was to push him to see the big picture. I taught him that the next step, once he finishes 4 by n graphs is not to do 5 by n graphs, as one might think. After the first step, the second step should be bigger. He should use his insight and understanding of 4 by n graphs to try to see what he can do for any grid graphs.

This is exactly what he did. After he finished the calculation of the rank number of the 4 by n graphs, he found a way to improve the known bounds for the ranking number of any grid graph. His paper is available at the arXiv.

I just looked at my notes for my work with Sitan. The last sentence: “Publishable results, a potential winner.”

Share:Facebooktwitterredditpinterestlinkedinmail