Archive for the ‘Puzzles’ Category.

Conway’s Wizards Generalized

Here I repeat the Conway’s Wizards Puzzle from a previous posting:

Last night I sat behind two wizards on a bus, and overheard the following:

— A: “I have a positive integral number of children, whose ages are positive integers, the sum of which is the number of this bus, while the product is my own age.”
— B: “How interesting! Perhaps if you told me your age and the number of your children, I could work out their individual ages?”
— A: “No.”
— B: “Aha! AT LAST I know how old you are!”

Now what was the number of the bus?

It is obvious that the first wizard has more than two children. If he had one child then his/her age would be the number of the bus and it would be the same as the father’s age. While it is unrealistic, in mathematics many strange things can happen. The important part is that if the wizard A had one child he couldn’t have said ‘No’. The same is true for two children: their age distribution is uniquely defined by the sum and the product of their ages.

Here is a generalization of this puzzle:

Last night I sat behind two wizards on a bus, and overheard the following:

— Wizard A: “I have a positive integral number of children, whose ages are positive integers, the sum of which is the number of this bus, while the product is my own age. Also, the sum of the squares of their ages is the number of dinosaurs in my collection.”
— Wizard B: “How interesting! Perhaps if you told me your age, the number of your children, and the number of dinosaurs, I could work out your children’s individual ages. ”
— Wizard A: “No.”
— Wizard B: “Aha! AT LAST I know how old you are!”

Now what was the number of the bus?

As usual with generalizations, they are drifting far from real life. For this puzzle, you have to open up your mind. In Conway’s original puzzle you do not need to assume that the wizard’s age is in a particular range, but once you solve it, you see that his age makes sense. In this generalized puzzle, you should assume that wizards can live thousands of years, and keep their libido that whole time. Wizards might spend so much of their youth thinking, that they postpone starting their families for a long time. The wizards’ wives are also generalized. They can produce children in great quantities and deliver multiple children at the same time in numbers exceeding the current world record.

Another difference with the original puzzle is that you can’t solve this one without a computer.

You can continue to the next step of generalization and create another puzzle by adding the next symmetric polynomial on the ages of the children, for example, the sum of cubes. In this case, I do not know if the puzzle works: that is, if there is an “AHA” moment there. I invite you, mighty geeks, to try it. Please, send me the answer.

In case you are wondering why the wizard is collecting dinosaurs, I need to point out to you that John H. Conway is a superb puzzle inventor. His puzzle includes a notation suggestion: a for the wizard’s age, b for the bus, c for the number of children. Hence, the dinosaurs.

Share:Facebooktwitterredditpinterestlinkedinmail

Simplified Wizards Puzzle

Here is my simplified version of Conway’s wizards puzzle.

Last night when I was coming home from my writing class with Sue Katz, I sat behind two wizards on the bus, and overheard the following:

— Wizard A: “I have a positive integral number of children, whose ages are positive integers, the sum of which is the number of this bus, while the product is the amount of dollars I have in my pocket.”

At this point I interrupted the wizard. “Excuse me, professor, I overheard your conversation and can’t resist asking you a question. Usually when a father says ‘my children’ everyone assumes that he has at least two children. Can I assume that?”

— Wizard A: “No. I stated my assumptions up front. A positive integral number of children means one or more.”

I started thinking. If I were to explain this to a non-mathematician who assumes that ‘my children’ means more than one child, I would need to change the wizard’s statement into the following:

“I have at least one child. The ages of my one-or-more children are all positive integers. The sum of the ages of my children or the age of my only child is the number of this bus. The product of the ages of my children or my only child’s age is the amount of dollars I have in my pocket.”

Hmm. I like that mathematicians use ‘my children’ to indicate any number of children. Makes puzzles faster to type.

Anyway, the wizards continued their discussion:

— Wizard B: “How interesting! Perhaps if you told me the number of your children, I could work out their individual ages”
— Wizard A: “No.”
— Wizard B: “Aha! AT LAST I know how many children you have!”

If I were John Conway, I would have asked you next, “What is the number of the bus?” As I am not John Conway, I’ll ask you, “Why do we presume that Wizard A hasn’t cheated on his wife?”

The answer is that all wizards are notorious for making precise statements. If he cheats a lot, he would have started the conversation with, “The number of children I know about is a positive integer.” Or maybe, more discreetly, “My wife and I have a positive integral number of children.”

If you have already figured out the number of the bus, the bonus question is, “Why did I change the ‘age of the first wizard’ in Conway’s original puzzle into the ‘amount of dollars’ in my puzzle?”

When I left the bus, I started wondering why on earth anyone would ever want to sum up the ages of their children. And I remembered that I once did it myself. I was trying to persuade my sister to apply for U.S. citizenship. My argument was that by moving here the life expectancy of her children would increase by 30 years. Indeed, she has two sons and the male life expectancy in Russia and the U.S. has an astonishing 15-year difference. I have to admit that my argument is not very clean, as we do not know the causes for this difference and, besides, the data is for life expectancy at birth and it changes while our kids age. My sister dismissed my argument, saying that the low male life expectancy in Russia is due to alcoholism and that her family is not in the high-risk group.

So, there could be a reason to sum up the ages of your children, but why would anyone ever want to multiply the ages of their children? In any case, if the first wizard continues to keep an amount of dollars equaling the product of the ages of his children in his pocket, his pocket will do better than mutual funds for the next several years.

Share:Facebooktwitterredditpinterestlinkedinmail

A Very Special Ten-Digit Number

 This puzzle was given to me by John H. Conway, and he heard it from someone else:

Find a ten-digit number with all distinct digits such that the string formed by the first k digits is divisible by k for any k ≤ 10.

Surprisingly, there is a unique solution to this puzzle. Can you find this very special ten-digit number?

For the contrast, consider ten-digit numbers with all distinct digits such that the string formed by the last k digits is divisible by k for any k ≤ 10. These numbers are not so special: there are 202 of them. My puzzle is: find the smallest not-so-special number.

Share:Facebooktwitterredditpinterestlinkedinmail

John Conway’s Wizards

John Conway sent me a puzzle about wizards, which he invented in the sixties. Here it is:

Last night I sat behind two wizards on a bus, and overheard the following:

— A: “I have a positive integral number of children, whose ages are positive integers, the sum of which is the number of this bus, while the product is my own age.”
— B: “How interesting! Perhaps if you told me your age and the number of your children, I could work out their individual ages?”
— A: “No.”
— B: “Aha! AT LAST I know how old you are!”

Now what was the number of the bus?

Share:Facebooktwitterredditpinterestlinkedinmail

MIT Mystery Hunt Functions

My favorite puzzle at 2008 MIT Mystery Hunt was the puzzle named Functions. Here is this puzzle:

 

36 -> 18      A,B
2 -> 1        A,C,G,H,K,L,O
512 -> 256    A,C,H
4 -> 2        A,G,H,Q
320 -> 160    A,R
411 -> 4      B,E,Q
13 -> 3       B,G,K
88 -> 11      C,D
45 -> 9       C,D,F,J,L
48 -> 6       C,G,M,P,Q
4 -> 1        C,K,L,N,O
36 -> 9       D,E,F
66 -> 8       D,E,G,I
10 -> 3       D,G,L
1 -> 3        D,L
150 -> 15     D,M
3 -> 2        E,H,J,K
25 -> 3       E,K,L,N,Q
9477 -> 14    E,M
129 -> 4      E,N,P
55 -> 10      F,J
411 -> 6      F,K,L,M,N
2002 -> 4     F,O,Q
79 -> 8       G,I,L,P
25 -> 20      H,M
176 -> 80     H,R
3665 -> 8     I,N,Q
7 -> 3        K,Q
11 -> 5       L,M
501 -> 2      L,O,P,Q
8190 -> 5     M,O
180 -> 3      O,P
50 -> 10      R

? -> (?)      F,R
(?) -> ?      J,L
(?) -> ?      A,F
(?) -> ?      N,O,Q
? -> (?)      A,D,J
(?) -> ?      D,H
(?) -> ?      G,K,Q
? -> (?)      B,D,M
(?) -> ?      E,H
? -> (?)      D,F,G,L
? -> (?)      C,G,P
Share:Facebooktwitterredditpinterestlinkedinmail