Archive for the ‘Puzzles’ Category.

Cheese and Butter at the Fall Tournament of the Towns

Here’s a fresh challenge from the recent Tournament of the Towns, crafted by Alexander Shapovalov.

Puzzle. A mother and her son are playing a game involving cheese and butter. The son starts by cutting a 300-gram block of cheese into 4 pieces. Then, the mother divides 280 grams of butter between two plates. Afterward, the son places the cheese pieces onto these same plates. The son wins if, on both plates, there is at least as much cheese as butter. If not, the mother wins. Can either the mother or the son guarantee a win, regardless of the other’s moves?

Share:Facebooktwitterredditpinterestlinkedinmail

A Hat Puzzle with a Twist

I love hat puzzles, and this one, posted on Facebook by Konstantin Knop, is no exception.

Puzzle. The sultan decided to test his three sages once again. This time, he showed them five hats: three red and two green. Each sage was blindfolded and had one hat placed on their head. When the sages removed their blindfolds, they could see the hats on the other sages but not their own. The twist in this puzzle is that one of the sages is color-blind and cannot distinguish red from green. The sages are all friends and are aware of each other’s perception of color. The sages are then asked, in order, if they know the color of their hats. Here’s how the conversation unfolded:

  • Alice: I do not know the color of my hat.
  • Bob: Me too, I do not know the color of my hat.
  • Carol: Me too, I do not know the color of my hat.
  • Alice: I still do not know the color of my hat?

The question is: Who is color-blind?


Share:Facebooktwitterredditpinterestlinkedinmail

Help the Fisherman

From time to time, the homework for my PRIMES STEP students includes questions that are not exactly mathematical. Last week, we had the following physics puzzle.

Puzzle. A fisherman needed to move a heavy iron thingy from one river’s shore to another. When he put the thingy in his boat, the boat lowered so much that it wasn’t safe to operate. What should he do?

The expected answer: He should attach the thingy to the bottom of the boat. When the object is inside the boat, the boat needs to displace enough water to account for the entire weight of the boat and the thingy. When the thingy is attached to the bottom of the boat, the thingy experiences its own buoyancy. Thus, the water level rises less because the thingy displaces some water directly, reducing the boat’s need to displace extra water. Thus, the amount of weight the fisherman saves is equal to the amount of water that would fit into the shape of this thingy.

As usual, my students were more inventive. Here are some of their answers.

  • The fisherman could cut the iron thingy and transport it piece by piece.
  • He can swim across and drag the boat with a rope with the thingy inside.
  • He can use a second boat to pull the first boat with the thingy in it.
  • It is another river’s shore, so he can just take the iron with him to a different river without going over water.
  • If the fisherman has extra boat material, heightening the boat’s walls would keep it from sinking.

Also, some funny answers.

  • He could fast for a few days, making him lighter.
  • He could tie helium balloons to the boat to keep it afloat even after he gets in.
  • Wait until winter and slide the boat on ice.

And my favorite answer reminded me of a movie I recently re-watched.

  • You’re gonna need a bigger boat.

Share:Facebooktwitterredditpinterestlinkedinmail

Grigori Perelman’s Puzzle

Have you heard of Grigori Perelman? If you like math, you probably have. He is one of the most renowned mathematicians in the world. I recently got a book on the Leningrad Mathematical Olympiads (scheduled for publication in English in 2025) and found Grigori’s name there. He authored one of the Olympiad problems from 1984. For context, he was born in 1966. Here it is.

Puzzle. You are given ten numbers: one “1” and nine “0”s. You are allowed to replace any two numbers with their arithmetic mean. What is the smallest number that can appear in place of the “1” after a series of such operations?


Share:Facebooktwitterredditpinterestlinkedinmail

Pass-Fail

Recent Facebook Puzzle from Denis Afrisonov.

Puzzle. 100 students took a test where each was asked the same question: “How many out of 100 students will get a ‘pass’ grade after the test?” Each student must reply with an integer. Immediately after each answer, the teacher announced whether the current student passed or failed based on their answer. After the test, an inspector checks if any student provided a correct answer but was marked as failed. If so, the teacher is dismissed, and all students receive a passing grade. Otherwise, the grades remain unchanged. Can the students devise a strategy beforehand to ensure all of them pass?

Share:Facebooktwitterredditpinterestlinkedinmail

Another Symmetry Puzzle

I recently posted a symmetry puzzle from Donald Bell. He just sent me another one.

Puzzle. Start with a 30-60-90 triangle (half of an equilateral triangle). Divide it into two 30-60-90 triangles of different sizes by dropping a perpendicular from the right-angled corner to the opposite side. Put the resulting two pieces together to form a symmetrical shape. There are two solutions.

It took me some time to find the second solution. I love this puzzle.


Share:Facebooktwitterredditpinterestlinkedinmail

Is It Possible?

Usually, I only post puzzles to which I know the solution. However, I don’t know the solution to this exciting geometry question from Facebook, yet. But I like the puzzle so much that I’d rather post it than wait until I find time to think about it.

Puzzle. A centrally-symmetric figure is cut into two equal polygons: A and B. Is it possible that the center of symmetry is in A but not in B?


Share:Facebooktwitterredditpinterestlinkedinmail

An Alternator Coin Puzzle

I run a program at MIT called PRIMES STEP, where we conduct mathematical research with children in grades 6 through 9. Our first research project was about a funny coin called an alternator. This coin exists only in a mathematician’s mind as it can change weight according to its own will. When you put the alternator on the scale, it can either weigh the same as a real coin or a fake coin (the fake coins are lighter than real ones). The coin strictly alternates how much it weighs each time it is put on the scale. My colleague, Konstantin Knop, recently sent me a fresh alternator puzzle.

Puzzle. There are four identical-looking coins: two real, one fake, and one alternator. How do you find the alternator using a balance scale at most three times?


Share:Facebooktwitterredditpinterestlinkedinmail

2024 MIT Mystery Hunt

I am not as excited about the MIT Mystery Hunt as I used to be. So, for this year’s hunt, I didn’t go through all the puzzles but present here only the puzzles that were recommended to me. I start with math, logic, and CS.

Then we have some word puzzles.

Now, the rest.

Share:Facebooktwitterredditpinterestlinkedinmail

Three L-tetraminoes

Here is a cool puzzle I heard from Tiago Hirth at the last Gathering for Gardner, who in turn heard it from Donald Bell.

Puzzle. You have three L-tetrominoes. Arrange them on a plane without overlaps so that the resulting shape has a line of symmetry.

L Tetromino
L Tetromino
L Tetromino

Share:Facebooktwitterredditpinterestlinkedinmail