Archive for the ‘Puzzles’ Category.

Help the Fisherman

From time to time, the homework for my PRIMES STEP students includes questions that are not exactly mathematical. Last week, we had the following physics puzzle.

Puzzle. A fisherman needed to move a heavy iron thingy from one river’s shore to another. When he put the thingy in his boat, the boat lowered so much that it wasn’t safe to operate. What should he do?

The expected answer: He should attach the thingy to the bottom of the boat. When the object is inside the boat, the boat needs to displace enough water to account for the entire weight of the boat and the thingy. When the thingy is attached to the bottom of the boat, the thingy experiences its own buoyancy. Thus, the water level rises less because the thingy displaces some water directly, reducing the boat’s need to displace extra water. Thus, the amount of weight the fisherman saves is equal to the amount of water that would fit into the shape of this thingy.

As usual, my students were more inventive. Here are some of their answers.

  • The fisherman could cut the iron thingy and transport it piece by piece.
  • He can swim across and drag the boat with a rope with the thingy inside.
  • He can use a second boat to pull the first boat with the thingy in it.
  • It is another river’s shore, so he can just take the iron with him to a different river without going over water.
  • If the fisherman has extra boat material, heightening the boat’s walls would keep it from sinking.

Also, some funny answers.

  • He could fast for a few days, making him lighter.
  • He could tie helium balloons to the boat to keep it afloat even after he gets in.
  • Wait until winter and slide the boat on ice.

And my favorite answer reminded me of a movie I recently re-watched.

  • You’re gonna need a bigger boat.

Share:Facebooktwitterredditpinterestlinkedinmail

Grigori Perelman’s Puzzle

Have you heard of Grigori Perelman? If you like math, you probably have. He is one of the most renowned mathematicians in the world. I recently got a book on the Leningrad Mathematical Olympiads (scheduled for publication in English in 2025) and found Grigori’s name there. He authored one of the Olympiad problems from 1984. For context, he was born in 1966. Here it is.

Puzzle. You are given ten numbers: one “1” and nine “0”s. You are allowed to replace any two numbers with their arithmetic mean. What is the smallest number that can appear in place of the “1” after a series of such operations?


Share:Facebooktwitterredditpinterestlinkedinmail

Pass-Fail

Recent Facebook Puzzle from Denis Afrisonov.

Puzzle. 100 students took a test where each was asked the same question: “How many out of 100 students will get a ‘pass’ grade after the test?” Each student must reply with an integer. Immediately after each answer, the teacher announced whether the current student passed or failed based on their answer. After the test, an inspector checks if any student provided a correct answer but was marked as failed. If so, the teacher is dismissed, and all students receive a passing grade. Otherwise, the grades remain unchanged. Can the students devise a strategy beforehand to ensure all of them pass?

Share:Facebooktwitterredditpinterestlinkedinmail

Another Symmetry Puzzle

I recently posted a symmetry puzzle from Donald Bell. He just sent me another one.

Puzzle. Start with a 30-60-90 triangle (half of an equilateral triangle). Divide it into two 30-60-90 triangles of different sizes by dropping a perpendicular from the right-angled corner to the opposite side. Put the resulting two pieces together to form a symmetrical shape. There are two solutions.

It took me some time to find the second solution. I love this puzzle.


Share:Facebooktwitterredditpinterestlinkedinmail

Is It Possible?

Usually, I only post puzzles to which I know the solution. However, I don’t know the solution to this exciting geometry question from Facebook, yet. But I like the puzzle so much that I’d rather post it than wait until I find time to think about it.

Puzzle. A centrally-symmetric figure is cut into two equal polygons: A and B. Is it possible that the center of symmetry is in A but not in B?


Share:Facebooktwitterredditpinterestlinkedinmail

An Alternator Coin Puzzle

I run a program at MIT called PRIMES STEP, where we conduct mathematical research with children in grades 6 through 9. Our first research project was about a funny coin called an alternator. This coin exists only in a mathematician’s mind as it can change weight according to its own will. When you put the alternator on the scale, it can either weigh the same as a real coin or a fake coin (the fake coins are lighter than real ones). The coin strictly alternates how much it weighs each time it is put on the scale. My colleague, Konstantin Knop, recently sent me a fresh alternator puzzle.

Puzzle. There are four identical-looking coins: two real, one fake, and one alternator. How do you find the alternator using a balance scale at most three times?


Share:Facebooktwitterredditpinterestlinkedinmail

2024 MIT Mystery Hunt

I am not as excited about the MIT Mystery Hunt as I used to be. So, for this year’s hunt, I didn’t go through all the puzzles but present here only the puzzles that were recommended to me. I start with math, logic, and CS.

Then we have some word puzzles.

Now, the rest.

Share:Facebooktwitterredditpinterestlinkedinmail

Three L-tetraminoes

Here is a cool puzzle I heard from Tiago Hirth at the last Gathering for Gardner, who in turn heard it from Donald Bell.

Puzzle. You have three L-tetrominoes. Arrange them on a plane without overlaps so that the resulting shape has a line of symmetry.

L Tetromino
L Tetromino
L Tetromino

Share:Facebooktwitterredditpinterestlinkedinmail

Hundred Colors of Math

I recently bought a book by Evdokimov, titled Hundred Colors of Math. The book has lovely math puzzles and cute pictures. The book has answers but doesn’t explain them. Also, the English translation is decent but not perfect. For these two reasons, I am not sure I would recommend the book. However, I do like the puzzles, and here is one of them, called Runaway Cell.

Puzzle. The figure depicted in the picture (a 6-by-6 square, in which the top row is moved by one square) was cut along the grid lines into several identical parts which could be put together to form a 6-by-6 square. The parts are allowed to be turned over. What is the minimal possible number of such parts?

Runaway Cell

Share:Facebooktwitterredditpinterestlinkedinmail

Find the Side

Another cute geometry puzzle was posted on Facebook.

Puzzle. An equilateral triangle in a plane has three vertices with known x-coordinates: a, b, and c. What is the side of the triangle?

I want to describe three different solutions that the readers of the Facebook channel posted. But before doing so, let’s look at the problem’s symmetries. We can immediately say that the answer should be a symmetric function of three variables: |a-b|, |b-c|, and |c-a|. It is possible to coordinate-bash the problem. However, I always prefer geometric solutions. Having said that, if one wants a calculation, using complex numbers might speed things up.

A solution using complex numbers. Suppose c is the origin, then the first vertex corresponds to a complex number a+xi. Then, the second vertex can be found after rotating the first vertex around the origin by 60 degrees. That means it is at (a+xi)exp(±2πi/6). Without loss of generality, we can assume that the second vertex corresponds to (a+xi)(1+i√3)/2. It follows that b = (a−x√3)/2. Thus, x = 2(a/2-b)/√3. And the side length is √(a2+x2) = √(4(a2-ab+b2)/3). Adjusting for the choice of the origin, we get that the length is √(2((a-b)2+(b-c)2+(c-a)2)/3).

A geometric solution. Draw a line through point A parallel to the x-axis. Denote the intersections of this line with lines x=b and x=c as P and Q, correspondingly. Let R be the midpoint of the side BC. Then, the triangle PQR is equilateral. To prove it, notice that angles ARC and AQC are right, which implies that points ARCB are on the same circle with diameter AC. It follows that the angles RCA and RQA are the same; thus, the angle RQA is 60 degrees. Given that the triangle PQR is isosceles as R has to be on the bisector of PQ, we conclude that the triangle PQR is equilateral. Now, we can calculate the height of PQR and, therefore, the height of ABC, from which the result follows.

Find the Side Solution

A physics solution. Without loss of generality, we can assume that a+b+c=0. Thus, the y-axis passes through the triangle’s centroid. The moment of inertia of the system consisting of the three triangle vertices with respect to the y-axis is a2 + b2 + c2. Now, we add the symmetry consideration: the inertia ellipse must be invariant under the 60-degree rotation, implying that the ellipse is actually a circle. This means that the inertia moment doesn’t change under any system rotation. Thus, we can assume that one of the vertices lies on the y-axis. In this case, the inertia moment equals L2/2, where L is the length of the triangle’s side. The answer follows.


Share:Facebooktwitterredditpinterestlinkedinmail