Archive for the ‘Math Competitions’ Category.

My Computational Linguistics Olympiads

Do you know that I participated in Linguistics Olympiads in high school? They are not well-known in the US, but the Soviet Union has been running them since 1965. The first International Linguistics Olympiad was conducted in 2003, and the US joined in 2007. They are called Computational Linguistics because you are expected to discover some phenomenon in an unfamiliar language on the fly instead of knowing a lot of languages already. The problems mostly need logic and are a good fit for a person who likes mathematics. However, a feel for languages is very helpful.

I do not remember why I started attending the Olympiads, but I remember that there were two sets of problems: more difficult for senior and less difficult for non-senior years. I used to be really good at these Olympiads. When I was in 8th grade, I finished my problems before the time ran out and started the senior problems. I got two awards: first place for non-senior years and second place for senior years. In 9th grade, I got two first-place awards. I didn’t know what to do in 10th grade, which was a senior year at that time in the USSR. I couldn’t get two first-place awards, as I could no longer compete in the non-senior category. I felt ashamed that my result could only be worse than in the previous years, so I just didn’t go.

Tanya getting a prize at a linguistics Olympiad

The prizes were terrific: they gave me tons of rare language books. In the picture, a guy from the jury is carrying my prizes for me. I immediately sold the books at used-books stores for a good price. Looking back, I should have gone to the Olympiad in 10th grade: my winter boots had big holes.

Share:Facebooktwitterredditpinterestlinkedinmail

A Splashy Math Problem Solution

I recently wrote a post, A Splashy Math Problem, with an interesting problem from the 2021 Moscow Math Olympiad.

Problem (by Dmitry Krekov). Does there exist a number A so that for any natural number n, there exists a square of a natural number that differs from the ceiling of An by 2?

The problem is very difficult, but the solution is not long. It starts with a trick. Suppose A = t2, then An + 1/An = t2n + 1/t2n = (tn + 1/tn)2 − 2. If t < 1, then the ceiling of An differs by 2 from a square as long as tn + 1/tn is an integer. A trivial induction shows that it is enough for t + 1/t to be an integer. What is left to do is to pick a suitable quadratic equation with the first and the last term equal to 1, say x2 – 6x + 1, and declare t to be its largest root.

Share:Facebooktwitterredditpinterestlinkedinmail

The 41-st Tournament of the Towns

Today I present three problems from the 41-st Tournament of the Towns that I liked: an easy one, one that reminds me of the Collatz conjecture, and a hard one.

Problem 1 (by Aleksey Voropayev). A magician places all the cards from the standard 52-card deck face up in a row. He promises that the card left at the end will be the ace of clubs. At any moment, an audience member tells a number n that doesn’t exceed the number of cards left in the row. The magician counts the nth card from the left or right and removes it. Where does the magician need to put the ace of clubs to guarantee the success of his trick?

Problem 2 (by Vladislav Novikov). Number x on the blackboard can be replaced by either 3x + 1 or ⌊x/2⌋. Prove that you can use these operations to get to any natural number when starting with 1.

Problem 3 (by A. Gribalko). There are 2n consecutive integers written on a blackboard. In one move, you can split all the numbers into pairs and replace every pair a, b with two numbers: a + b and ab. (The numbers can be subtracted in any order, and all pairs have to be replaced simultaneously.) Prove that no 2n consecutive integers will ever appear on the board after the first move.

Share:Facebooktwitterredditpinterestlinkedinmail

A Splashy Math Problem

A problem from the 2021 Moscow Math Olympiad went viral on Russian math channels. The author is Dmitry Krekov.

Problem. Does there exist a number A so that for any natural number n, there exists a square of a natural number that differs from the ceiling of An by 2?

Share:Facebooktwitterredditpinterestlinkedinmail

The Anniversary Coin

Konstantin Knop, the world’s top authority on coin-weighing puzzles, suggested the following problem for the 2019 Russian Math Olympiad.

Puzzle. Eight out of sixteen coins are heavier than the rest and weigh 11 grams each. The other eight coins weigh 10 grams each. We do not know which coin is which, but one coin is conspicuously marked as an “Anniversary” coin. Can you figure out whether the Anniversary coin is heavier or lighter using a balance scale at most three times?

Share:Facebooktwitterredditpinterestlinkedinmail

Build an All-red Cube

This is one of my favorite problems given at the 2017 Moscow Olympiad to grades 6 and 7. It was suggested by one of my favorite problem writers: Alexander Shapovalov.

Problem. We are given eight unit cubes. The third of the total number of their faces are blue, and the rest are red. We build a large cube out of these cubes so that exactly the third of the unit cube’s visible faces are red. Prove that you can use these cubes to build a large cube whose faces are entirely red.

Share:Facebooktwitterredditpinterestlinkedinmail

Two Dice

My friend Alex Ryba uses interesting math questions in the CUNY Math Challenge. For the 2016 challenge they had the following problem.

Problem. Eve owns two six-sided dice. They are not necessarily fair dice and not necessarily weighted in the same manner. Eve promises to give Alice and Bob each a fabulous prize if they each roll the same sum with her dice. Eve wishes to design her two dice to minimize the likelihood that she has to buy two fabulous prizes. Can she weight them so that the probability for Alice and Bob to get prizes is less than 1/10?

The best outcome for Eve would be if she can weight the dice so that the sum is uniform. In this case the probability that Alice and Bob get the prizes is 1/11. Unfortunately for Eve, such a distribution of weight for the dice is impossible. There are many ways to prove it.

I found a beautiful argument by Hagen von Eitzen on the stack exchange: Let ai (correspondingly bi) be the probabilities that die A (correspondingly B) shows i + 1. It would be very useful later that that i ranges over {0,1,2,3,4,5} for both dice. Let f(z) = ∑ aizi and g(z) = ∑ bizi. Then the desired result is that f(z)g(z) = ∑j=010 zj/11. The roots of the right side are the non-real roots of unity. Therefore both f and g have no real roots. So, they must both have even degree. This implies a5=b5=0 and the coefficient of z10 in their product is also 0, contradiction.

Alex himself has a straightforward argument. The probabilities of 2 and 12 have to be equal to 1/11, therefore, a0b0 = a5b5 = 1/11. Then the probability of a total 7 is at least a0b5 + a0b5. The geometric mean of a0b5 and a0b5 is 1/11 (from above), so their arithmetic mean is at least 1/11 and their sum is at least 2/11. Therefore, the uniform distribution for sums is impossible.

So 1/11 is impossible, but how close to it can you get?

Share:Facebooktwitterredditpinterestlinkedinmail

My 1975 IMO Team

My IMO Team, 1975

I just got this picture from my friend Victor Gutenmacher, which I never saw before. My 1975 IMO team is posing at our training grounds before the Olympiad trip to Bulgaria.

Left to right: Boris Yusin, Yuri Ionin, Zoya Moiseyeva (front), Gregory Galperin (back), me, Ilya Yunus, Valentin Skvortsov, Aleksandr Kornyushkin, Sergei Finashin, Sergei Fomin (front), Alexander Reznikov (back), Yuri Shmelev (front), Yuri Neretin (back), Victor Gutenmacher.

Our coaches are in the shot as well. Surprisingly, or not surprisingly, all of them moved to the USA. Yuri Ionin, now retired, was a professor at Central Michigan University. Gregory Galperin is a professor at Eastern Illinois University. Sergei Fomin is a professor at the University of Michigan. Victor Gutenmacher worked for BBN Technologies and Siemens PLM Software, and is now retired.

There are two more adults in the picture: Valentin Anatolievich Skvortsov, our leader and Zoya Ivanovna Moiseyeva, our deputy leader. Skvortsov was working at the math department of Moscow State University at that time. The University was angry that he didn’t block some students with Jewish heritage from the team thus allowing them to be accepted to Moscow State University without exams. I wrote a story of how Zoya persuaded Alexander Reznikov not to go to Moscow University to help Valentin. It ruined Alexander’s live, and didn’t even help Valentin. 1975 was Valentin’s last trip as the leader.

Share:Facebooktwitterredditpinterestlinkedinmail

Solutions to Geometry Puzzles from the 35-th Lomonosov Tournament

I recently posted two geometry problems. Now is the time for solutions:

Problem 1. Is it possible to put positive numbers at the vertices of a triangle so that the sum of two numbers at the ends of each side is equal to the length of the side?

One might guess that the following numbers work: (a+b-c)/2, (b+c-a)/2 and (c+a-b)/2, where a, b, and c are the side lengths. But there exists a geometric solution: Construct the incircle. The tangent points divide each side into two segment, so that the lengths of the segments ending at the same vertex are the same. Assigning this length to the vertex solves the problem. Surprisingly, or not surprisingly, this solution gives the same answer as above.

Problem 2. Prove that it is possible to assign a number to every edge of a tetrahedron so that the sum of the three numbers on the edges of every face is equal to the area of the face.

The problem is under-constrained: there are six sides and four faces. There should be many solutions. But the solution for the first problem suggests a similar idea for the second problem: Construct the inscribed sphere. Connect a tangent point on each face to the three vertices on the same face. This way each face is divided into three triangles. Moreover, the lengths of the segments connecting the tangent points to a vertex are the same. Therefore, two triangles sharing the same edge are congruent and thus have the same area. Assigning this area to each edge solves the problem.

There are many solutions to the second problem. I wonder if for each solution we can find a point on each face, so that the segments connecting these points to vertices divide the faces into three triangles in such a way that triangles sharing an edge are congruent. What would be a geometric meaning of these four points?Share:Facebooktwitterredditpinterestlinkedinmail

2015 Coin Problem Solution

A while ago I posted my second favorite problem from the 2015 All-Russian Math Olympiad:

Problem. A coin collector has 100 coins that look identical. He knows that 30 of the coins are genuine and 70 fake. He also knows that all the genuine coins weigh the same and all the fake coins have different weights, and every fake coin is heavier than a genuine coin. He doesn’t know the exact weights though. He has a balance scale without weights that he can use to compare the weights of two groups with the same number of coins. What is the smallest number of weighings the collector needs to guarantee finding at least one genuine coin?

Now it’s solution time. First we show that we can do this in 70 weighings. The strategy is to compare one coin against one coin. If the scale balances, we are lucky and can stop, because that means we have found two real coins. If the scale is unbalanced, the heavier coin is definitely fake and we can remove it from consideration. In the worst case, we will do 70 unbalanced weighings that allow us to remove all the fake coins, and we will find all the real coins.

The more difficult part is to show that 69 weighings do not guarantee finding the real coin. We do it by contradiction. Suppose the weights are such that the real coin weighs 1 gram and the i-th fake coin weighs 100i grams. That means whatever coins we put on the scale, the heaviest pan is the pan that has the fake coin with the largest index among the fake coins on the scale.

Suppose there is a strategy to find a real coin in 69 weighings. Given this strategy, we produce an example designed for this strategy, so that the weighings are consistent, but the collector cannot find a real coin.

For the first weighing we assign the heaviest weight, 10070 to one of the coins on the scale and claim that the pan with this coin is heavier. We continue recursively. If a weighing has the coins with assigned weights, we pick the heaviest coin on the pans and claim that the corresponding pan is heavier. If there are no coins with assigned weights on pans, we pick any coin on the pans, assigned the largest available weight to it and claim that the corresponding pan is heavier.

After 69 weighings, not more than 69 coins have assigned weights, while all the weighings are consistent. The rest of the coins can have any of the leftover weights. For example, any of the rest of the coins can weigh 100 grams. That means that there is no coin that is guaranteed to be real.Share:Facebooktwitterredditpinterestlinkedinmail