Archive for the ‘Books and Movies Reviews’ Category.

Taking Sudoku Seriously

I received the book Taking Sudoku Seriously by by Jason Rosenhouse and Laura Taalman for review and put it aside to collect some dust. You see, I have solved too many Sudokus in my life. The idea of solving another one made me barf. Besides, I thought I knew all there is to know about the mathematics of Sudoku.

One day out of politeness or guilt I opened the book — and couldn’t stop reading.

The book is written for people who like Sudoku, but hate math. This is so strange. Sudoku is math. People who are good at Sudoku are good at math, or at least they are supposed to be. It seems that math education in the United States is so bad that people who were born to be good at math and to like math, hate it instead. So the goal of the book is to establish a bridge from Sudoku to math. And the book does a superb job of it.

This well-written book moves from puzzles to discussions in such a natural way that math becomes a continuation of puzzles.

Taking Sudoku Seriously covers a lot of fun material: methods to solve Sudoku, how to count the number of different Sudoku puzzles, and how to find the smallest number of clues that are needed for a unique puzzle. The book travels into the neighboring area of Latin and Greco-Latin squares. While discussing all those fun things it covers groups, symmetries, number theory, graph theory (including book thickness) and more.

I am not the target audience for this book, because I do not need convincing that math is fun. The best part for me was the hundred puzzles. Only a portion of them were standard Sudoku puzzles — and I skipped those. The others were either Sudoku with a twist or plain math puzzles.

The puzzles are all very different and I was so excited by them, that I went ahead and solved them, and caught up with reading the text later. And I enjoyed both: reading and solving.

Here is puzzle 91 from the book. Fill in the grid so that every row, column, and block contains 1-9 exactly once. In addition, each worm must contain entries that increase from tail to head. For blue worms you must figure out yourself which end is the head.

My Take on Perelman

My American friends often ask me for insights into why Grigory Perelman refused the one million dollar Clay prize for his proof of the Poincaré conjecture. They are right to ask me: my life experience was very similar to Perelman’s.

I went to a high school for children gifted in math. I was extremely successful in competitions. I got my gold medal at IMO and went to college without entrance exams. I received my undergraduate and graduate degrees in one of the best math academic centers in Soviet Russia. Perelman traveled a similar path.

Without ever having met Perelman, I can suggest two explanations of why he might reject the money.

First explanation. To have it publicly known that you have suddenly come into money is very dangerous in Russia. Perelman’s life expectancy would have dropped immediately after accepting the million dollars. Russians that have tons of money either hide their wealth or build steel doors way before they make their first million. In addition to being a life hazard, money attracts a lot of bother. He would have been chased by all types of acquaintances asking for help or suggesting marriage proposals.

Second explanation. We grew up in a communist culture where money was scorned and math was idolized. The goal of research was research. Proving the conjecture was the prize itself. In his mind, receiving the award money might diminish the value of what he did. I understand this way of thinking, but I am personally too practical to follow such feelings and would accept the prize.

My first explanation has a flaw. Though valid, it doesn’t explain why he rejected the Fields medal. So I reached for the book abour Perelman, Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century by Masha Gessen. I like Gessen’s explanation of why he rejected the Fields medal:

His objection to the Fields Medal, though never stated as clearly, seemed to have been twofold: first: he no longer considered himself a mathematician and hence could not accept a price intended for the encouragement of midcareer researchers; and second, he wanted no part of ICM, with all the attendant publicity, speeches, ceremony, and king of Spain.

The reasons are specifically related to the medal, so the Clay prize rejection might not be connected to the medal rejection. This argument slightly rehabilitates my first explanation.

I liked the book. It is a tremendous undertaking — writing about a person who doesn’t want to talk to anyone. After reading it, I have one more possible explanation of his refusal of the prize.

Perelman is a loner. One of the closest people to him was his math Olympiad coach. The coaches tend to understand the solutions on the spot, mostly because they already know them. If in his mind Perelman expected all mathematicians to be like his coach, then he might have expected a parade in his honor the day after he solved the conjecture. Instead, he got silence and attempts to steal the prize from him.

Can you imagine doing the century’s best math work without receiving congratulations for many years? The majority of mathematicians waited for the judgment of the experts, as did Perelman. The experts were busy and much slower than Perelman expected. The conjecture was extremely difficult, and it was a high-profile situation — after all, \$1 million was attached to its solution. So the experts were very cautious in their pronouncements.

Finally, instead of congratulating Grigory, they said that the proof seemed to be correct and that they had not yet found any mistakes. If like Perelman, I was certain of my proof, I would have found this a painfully under-whelming conclusion.

Perelman expected to feel proud, but instead he probably felt unappreciated and attacked. Instead of the parade he may have hoped for, he had to wait for a long time, only to face disappointment and frustration. This reminds me of an old joke:

A genie is trapped in a lantern at the bottom of the sea. He vows, “I will give one million dollars to the person who frees me.” One thousand years pass. He changes his vow, “I will give any amount of money to the one who frees me.” Another thousand years pass. He ups the ante, “I will give any amount of money and two more wishes to the person who frees me.” Another thousand years pass. He promises, “I will kill the one who frees me.”

Third explanation. Perelman was profoundly disappointed in the math community. Unlike the genie, Perelman didn’t want to kill anyone, but he did want to express his disillusionment. Perhaps that is why he rejected a million dollars.

World Championship Puzzles

Do you like challenging puzzles? Are you tired of sudoku? Here’s your chance to try your hand at puzzles that are designed for world puzzle championships.

I’ve already done the homework for you — and it turned out to be more complicated than I anticipated. The world puzzle federation has a website, but unfortunately they are lazy or secretive. It is difficult to find puzzles there. A few puzzles are available in the World Puzzle Federation Newsletters.

Since I am stubborn, I spent a lot of time looking for championship puzzles. I found them in books. Here is the list I compiled so far. If you too are interested in high-level puzzles, this ought to make your search a lot easier. The book titles are confusing, so I added a description of what’s in them.

One of my favorite puzzle types is Easy as ABC. You have to fill one of A, B, C, and D in each row and column. The letters outside the grid indicate which letter you see first from that direction. Here is one from the 2011 newsletter:

Math Girls

Two girls. One is older and more experienced. The other is younger and more naive. Which of these two girls will the unnamed male narrator choose? What a great plot for a math book.

I am talking about Hiroshi Yuki’s book Math Girls. The plot allows the author to discuss math on different levels. Miruka’s math is more advanced and mysterious. Tetra’s math is simpler and more transparent.

The book starts discussing sequences and patterns. Can you guess the pattern behind the sequence: 1, 2, 3, 4, 6, 9, 8, 12, 18, 27, …? Can you explain how the beginning of this sequence might be very deceptive?

For the answer, you can read the book, which also discusses tons of fun topics: prime numbers, sum of divisors, absolute values, rotations and oscillations, De Moivre’s formula, generating functions, arithmetic and geometric means, differential and difference operators, Catalan numbers, infinite series, harmonic numbers, zeta function, Taylor series, partitions, and more.

I usually do not like math fiction, but this is more math than fiction. It’s quite superior to most other math books I’ve read, for it shows the unity of mathematics. It allows the readers to discover connections among different parts of mathematics, and it accomplishes this in a very thrilling way. Frankly, more thrilling than the romantic sections.

The fictional element brings an additional value to the book. The author uses dialogue to discuss points that are usually skipped in regular text books. The two girls give the narrator an opportunity to explore math on different levels: to talk about heavy stuff with Miruka and to provide explanations with Tetra.

I expected to be more interested in the sections dealing with advanced math. But the book is so well-written that the simpler things were a lot of fun, too. For example, I never before noticed that the column notation for n choose k is exactly the same as for a 2d vector with coordinates n and k. And I will never ever shout “zero” because the exclamation makes it “one”.

Why Americans Should Study the Moscow Math Olympiads

I have already written about how American math competition are illogically structured, for the early rounds do not prepare students for the later rounds. The first time mathletes encounter proofs is in the third level, USAMO. How can they prepare for problems with proofs? My suggestion is to look East. All rounds of Russian math Olympiads — from the local to the regional to the national — are structured in the same way: they have a few problems that require proofs. This is similar to the USAMO. At the national All-Russian Olympiad, the difficulty level is the same as USAMO, while the regionals are easier. That makes the problems from the regionals an excellent way to practice for the USAMO. The best regional Olympiad in Russia is the Moscow Olympiad. Here is the problem from the 1995 Moscow Olympiad:

We start with four identical right triangles. In one move we can cut one of the triangles along the altitude perpendicular to the hypotenuse into two triangles. Prove that, after any number of moves, there are two identical triangles among the whole lot.

This style of problems is very different from those you find in the AMC and the AIME. The answer is not a number; rather, the problem requires proofs and inventiveness, and guessing cannot help.

Here is another problem from the 2002 Olympiad. In this particular case, the problem cannot be adapted for multiple choice:

The tangents of a triangle’s angles are positive integers. What are possible values for these tangents?

The problems are taken from two books: Moscow Mathematical Olympiads, 1993-1999, and Moscow Mathematical Olympiads, 2000-2005. I love these books and the problems they present from past Moscow Olympiads. The solutions are nicely written and the books often contain alternative solutions, extended discussion, and interesting remarks. In addition, some problems are indexed by topics, which is very useful for teachers like me. But the best thing about these books are the problems themselves. Look at the following gem from 2004, which can be used as a magic trick or an idea for a research paper:

A deck of 36 playing cards (four suits of nine cards each) lies in front of a psychic with their faces down. The psychic names the suit of the upper card; after that the card is turned over and shown to him. Then the psychic names the suit of the next card, and so on. The psychic’s goal is to guess the suit correctly as many times as possible.
The backs of the cards are asymmetric, so each card can be placed in the deck in two ways, and the psychic can see which way the top card is oriented. The psychic’s assistant knows the order of the cards in the deck; he is not allowed to change the order, but he may orient any card in either of the two ways.
Is it possible for the psychic to make arrangements with his assistant in advance, before the latter learns the order of the cards, so as to ensure that the suits of at least (a) 19 cards, (b) 23 cards will be guessed correctly?
If you devise a guessing strategy for another number of cards greater than 19, explain that too.

Weighings and Puzzles

My co-author Konstantin Knop wrote a charming book, Weighings and Algorithms: from Puzzles to Problems. The book contains more than one hundred problems. Here are a couple of my favorites that I translated for you:

There is one gold medal, three silver medals and five bronze medals. It is known that one of the medals is fake and weighs less than the corresponding genuine one. Real medals made of the same metal weigh the same and from different metals do not. How can you use a balance scale to find the fake medal in two weighings?

There are 15 coins, out of which not more than seven are fake. All genuine coins weigh the same. Fake coins might not weigh the same, but they differ in weight from genuine coins. Can you find one genuine coin using a balance scale 14 times? Can you do it using fewer weighings?

You might get the impression that the latter problem depends on two parameters. Think about it: It is necessary that the majority of the coins are genuine in order to be able to solve the problem. In fact, the number of weighings depends on just one parameter: the total number of coins. Denote a(n) the optimal number of weighings needed to find a genuine coin out of n coins, where more than half of the coins are genuine. Can you calculate this sequence?

Hint. I can prove that a(n) ≤ A011371(n-1); that is, the optimal number of weighings doesn’t exceed n − 1 − (number of ones in the binary expansion of n−1).

The Oxford Murders

I decided to see the film The Oxford Murders

At the core of the movie are sequences of numbers and symbols. When the characters started a discussion about how to continue a sequence, I immediately tensed up. Why? Because when people ask what the next element in the sequence is, I get ready to confront them, by explaining that there are many ways to continue a sequence. For example, the sequence — 1, 2, 4 — could be powers of two, or could be Tribonacci numbers, or any of 10,000 sequences that the Online Encyclopedia of Integer Sequences spills out if you plug in 1, 2, 4. That is, if we do not count the infinity of sequences that are not in the Encyclopedia.

To my surprise and relief, the logic Professor, one of the main characters in the movie, explained that there is no unique way to continue a sequence. From that moment on, I relaxed and fell in love with the movie.

The movie is a detective story with a lot of twists and turns. The crimes are related to symbols. The first two symbols are in the picture below. Can you guess the next symbol?

I cannot. There is an irony in the film at this point, because the Professor and the student need to guess the sequence in order to solve the crimes. But the Professor has already explained that there is no unique way to continue. So illogical for a movie about logic.

And what’s worse, the sequence of symbols they finally discover doesn’t make sense. I guess I fell in love with this movie too quickly.

Eat to Live

I am reading the book Eat to Live by Joel Fuhrman. It contains a formula that as a math formula doesn’t make any sense. But as an idea, it felt like a revelation. Here it is:

HEALTH = NUTRIENTS/CALORIES

The idea is to choose foods that contain more nutrients per calorie. The formula doesn’t make sense for many reasons. Taken to its logical conclusion, the best foods would be vitamins and tea. The formula doesn’t provide bounds: it just emphasizes that your calories should be nutritious. However, too few calories — nutritious or not — and you will die. And too many calories — even super nutritious — are still too many calories. In addition the formula doesn’t explain how to balance different types of nutrients.

Let’s see why it was a revelation. I often crave bananas. I assumed that I need bananas for some reason and my body tells me that. Suppose I really need potassium. As a result I eat a banana, which contains 800 milligrams of potassium and adds 200 calories as a bonus. If I ate spinach instead, I would get the same amount of potassium at a price of only 35 calories.

The book suggests that if I start eating foods that are high in nutrients, I will satisfy my need for particular nutrients, and my cravings will subside. As a result I will not want to eat that much. If I start my day eating spinach, that might eliminate my banana desire.

I’ve been following an intuitive eating diet. I am trying to listen to my body hoping that my body will tell me what is better for it. It seems that my body sends me signals that are not precise enough. It’s not that my body isn’t communicating with me, but it is telling me “potassium” and all I hear is “bananas.” What I need to do is use my brain to help me decipher what my body really, really wants to tell me.

As Dr. Fuhrman puts it, we are a nation of overfed and malnourished people. But Fuhrman’s weight loss plan is too complicated and time-consuming for me, so I designed my own plan based on his ideas:

I will start every meal with vegetables, as they are the most nutritious. I hope that vegetables will provide the nutrients I need. That in turn will make me less hungry by the next meal, at which time I’ll take in fewer calories. I will report to my readers whether or not my plan works. I’m off to shop for spinach. Will I ever love it as much as bananas?

Fermat’s Room

Most movies related to mathematics irritate me because of simplifications. I especially do not like when a movie pretends to be intelligent and then dumbs it down. I recently watched the Spanish movie Fermat’s Room, which, as you may guess, annoyed me several times. In spite of that I enjoyed it very much.

The movie opens with people receiving invitations to attend a meeting for geniuses. To qualify for the meeting they need to solve a puzzle. Within ten days, they must guess the order underlying the following sequence: 5, 4, 2, 9, 8, 6, 7, 3, 1. Right away, at the start of the movie, I was already annoyed because of the simplicity of the question. You do not have to be a genius to figure out the order, not to mention how easy it would be to plug this sequence into the Online Encyclopedia of Integer Sequences to find the order in five minutes.

The participants were asked to hide their real names, which felt very strange to me. All famous puzzle solvers compete in puzzle championships and mystery hunts and consequently know each other.

The meeting presumably targets the brightest minds and promises to provide “the greatest enigma.” During the meeting they are given seven puzzles to solve. All of them are from children’s books and the so-called “greatest enigma” could easily be solved by kids. Though I have to admit that these were among the cutest puzzles I know. For example:

There are three boxes: one with mint sweets, the second with aniseed sweets, and the last with a mixture of the two. The boxes are labeled, but all the labels are wrong. What is the minimum number of sweets you need to taste to correctly re-label all the boxes?

Another of the film’s puzzles includes a light bulb in a room and three switches outside, where you have to correctly find the switch that corresponds to the bulb, but you can only enter the room once. In another puzzle you need to get out of prison by deciding which of two doors leads to freedom. You are allowed to ask exactly one question to one of the two guards, one of whom is a truth-teller and the other is a liar.

The other four puzzles are similar to these three I have just described. To mathematicians they are not the greatest enigmas. They are nice material for a children’s math club. For non-mathematicians, they may be fascinating. Certainly it’s a good thing that such tasteful puzzles are being promoted to a large audience. But they just look ridiculous as “the greatest enigmas.”

So what is it about this film that I so enjoyed?

The intensity of the movie comes from the fact that the people are trapped in a room that starts shrinking when they take more than one minute to solve a puzzle.

I well remember another shrinking room from Star Wars: A New Hope. When Princess Leia leads her rescuers to a room, it turns out to be a garbage compactor. The bad guys activate the compactor and two opposite walls start moving in. In contrast, Fermat’s room is shrinking in a much more sophisticated way: all four walls are closing in. Each of the walls in the rectangular room is being pressured by an industrial-strength press. The walls in the corners do not crumble, but rather one wall glides along another. I was more puzzled by this shrinking room than I was by the math puzzles. I recommend that you try to figure out how this can be done before seeing the movie or its poster.

However, the best puzzle in the movie is the plot itself. Though I knew all the individual puzzles, what happened in between grabbed me and I couldn’t wait to see what would happen next. I saw the movie twice. After the first time, I decided to write this review, so I needed to check it again. I enjoyed it the second time even better than the first time. The second time, I saw how nicely the plot twists were built.

Maybe I shouldn’t complain about the simplicity and the familiarity of the puzzles. If they were serious new puzzles I would have started solving them instead of enjoying the movie. The film’s weakness might be its strength.

Mutant Sudoku

Tired of the same old sudoku? Here’s an opportunity to try many variations of it. Thomas Snyder and Wei-Hwa Huang wrote a book called Mutant Sudoku. The authors are both Sudoku champions. I like the book because the authors are trying to bring everyone up to their level, rather than dumbing down their puzzles. So the book is not at all boring as are most Sudoku books.

The book contains about 180 fun puzzles. Look at the variety:

• Tight Fit Sudoku
• Extra Space Sudoku
• Tile Sudoku
• 3-D Sudoku
• Outside Sudoku
• Shape Sudoku
• Target Sum Sudoku
• Thermo-Sudoku
• Consecutive Sudoku
• Surplus Sudoku
• Deficit Sudoku
• Chimeric Sudoku

Wei-Hwa Huang kindly sent me this sample Thermo Sudoku puzzle from the book to use on my blog. The grey areas represent thermometers. Every particular thermometer has to have numbers in increasing order (not necessarily consecutive) starting from the bulb.

The second book by the same authors Sudoku Masterpieces: Elegant Challenges for Sudoku Lovers, is itself a masterpiece. With about 100 puzzles, there are fewer than in the first book, but there are more types of puzzles. As a consequence, you’ll have less practice for each particular type, but more variety. In addition, as you can see from the cover, the second book is elegantly designed.

I bought both books and immediately started scribbling in the first one. My bad handwriting would seem so out of place in the beautiful second book that I have not even started working in it yet. Maybe I will give it as a gift to someone with better penmanship.