Nothing is on Hold by the arXiv

I wrote a paper with my son, Alexey Radul, titled (Not so) Much Ado About Nothing. As the title indicates, nothing is discussed in this paper. It’s a silly, humorous paper full of puns about “nothing.” We submitted the paper to the arXiv two months ago, and it has been on hold since then.

This reminds me of an earlier paper of mine that the arXiv rejected because it didn’t have journal references. (Not so) Much Ado About Nothing is done in proper style. It follows all the formal rules of math papers, and contains references, acknowledgements, an introduction with motivation, and results. However, the results amount to nothing. The fact that this paper is not accepted is a good sign. It means the arXiv doesn’t just look at the papers formally; they look at the content as well.

On the other hand, the paper is submitted as a paper in recreational mathematics, and it is humorous, so it could have been accepted, since nothing is more recreational than nothing.

Neither rejection nor acceptance would have surprised me. The only thing I do not understand is why it is on hold. Why hold on to nothing?




Walking Lessons

I know how to walk. Everyone knows how to walk. Or so I thought. Now I am not sure any more.

I’ve been taking ballroom dance lessons on and off for many years. But at some point I stopped progressing. I got stuck at the Silver level. I know many steps and am a good follower, but I often lose balance and my steps are short.

Then I met Armin Kappacher, an unusual dance coach for the MIT Ballroom dance team. I would like to share some of his wisdom with you, but Armin doesn’t have much presence on the web. He only wrote one article for Dance Archives: A Theoretical and Practical Approach to “Seeing The Ground of a Movement.”

Wedding Queen

Although I’ve been attending his classes for several years, I haven’t been able to understand a word. He might say, “Your right arm is disconnected from your chest center.” But what does that mean? Others seemed to understand him, because they greatly improved under his guidance. But I was so out of touch with my body that I couldn’t translate his words into something my body could understand. Being a mathematician, I lived my whole life in my brain. I never tried to listen to my body. I was never aware of whether my forehead was relaxed or tensed, or if my pelvic floor was collapsed. I grasped that it was my own fault that I failed to understand Armin. I stuck with his classes.

After three years of group classes, I asked Armin for a private lesson with an emphasis on the basics. He instructed me to take three steps and quickly discovered my issues, which included:

  • I was too collapsed.
  • My spine was too curved.
  • My butt stuck out too much.
  • My weight was not forward enough.
  • My head was too forward.
  • I didn’t sway.

So now I am taking walking classes from Armin. I am slowly starting to feel what Armin means when he says that my pelvic floor is collapsed. I feel better now. Whenever I pay attention to how I am walking, my posture improves. As a result, I feel more confident, my mood approves, and I feel like more oxygen is getting to my brain. My friends have noticed a change. For example, my son Sergei got married recently, and I was sitting under the Chuppah during the ceremony (see photo). Afterwards, several friends told me that I looked like a queen.

I have to give some credit to my earrings. They were too long and were getting caught on my dress. So I was constantly trying to wiggle my head up—using Armin’s techniques.

I proudly brought this photo to Armin to show him my queen-like posture. He told me that I look okay above the chest center. But below the chest center my spine is still collapsed. Next time I will take sitting lessons with Armin.


Skyscrapers (Sum)

Skyscraper puzzles are one of my favorite puzzles types. Recently I discovered a new cute variation of this puzzle on the website the Art of Puzzles. But first let me remind you what the skyscraper rules are. There is an n by n square grid that needs to be filled as a Latin square: each number from 1 to n appears exactly once in each row and column. The numbers in the grid symbolize the heights of skyscrapers. The numbers outside the grid represent how many skyscrapers are seen in the corresponding columns/row from the direction of the number.

The new puzzle is called Skyscrapers (Sum), and the numbers outside the grid represent the sum of the heights of the skyscrapers you see from this direction. For example, if the row is 216354, then from the left you see 8(=2+6); and from the right you see 15(=4+5+6).

Skyscraper Sums

Here’s an easy Skyscrapers (Sum) puzzle I designed for practice.

The Art of Puzzles has four Skyscrapers (Sum) puzzles that are more difficult than the one above:



Jokes That Clicked

* * *

A button of unknown functionality should be pressed an even number of times.

* * *

When I tell you that I am closer to 30 than to 20, I mean to tell you that I am 42.

* * *

If a car with a student-driver sign gets its windshield wipers turned on, then the car is about to turn.

* * *

I always learn from the mistakes of people who followed my advice.

* * *

A traffic policeman stops a car:
—You’re going 70 in a 35 miles-per-hour zone.
—But there are two of us!

* * *

The most popular tweet, “Live your life so that you do not have time for social networks.”


ApSimon’s Mints Investigation

I recently wrote a post about the ApSimon’s Mints problem:

New coins are being minted at n independent mints. There is a suspicion that some mints might use a variant material for the coins. There can only be one variant material. Therefore, fake coins weigh the same no matter where they’ve been minted. The weight of genuine coins is known, but the weight of fake coins is not. There is a machine that can precisely weigh any number of coins, but the machine can only be used twice. You can request several coins from each mint and then perform the two weighings in order to deduce with certainty which mints produce fake coins and which mints produce real coins. What is the minimum total of coins you need to request from the mints?

The post was accompanied by my paper Attacking ApSimon’s Mints.

Unfortunately, both the post and the paper contain wrong information. They both state that the number of coins as a sequence of the number of mints is 1, 2, 4, 8, 15, 38, 74. This is wrong. I took this data from the sequence A007673 in the OEIS database. The sequence had incorrect data lying dormant for 20 years. I believe that the sequence was generated from the paper of R. K. Guy and R. J. Nowakowsky, ApSimon’s Mints Problem, published in Monthly in 1994. To the credit of Guy and Nowakowsky, they never claimed to find the best solution: they just found a solution, thus providing a bound for the sequence. Someone mistook their solution for the optimal one and generated the sequence in the database.

After my post, my readers got interested in the problem and soon discovered the mistake. First Konstantin Knop found a solution for 6 mints with 30 coins and for 7 mints with 72 coins. Konstantin is my long-time collaborator. I trust him so I was sure the sequence was flawed. Then someone located a reference to a paper in Chinese A New Algorithm for ApSimon’s Mints Problem. Although none of my readers could find the paper itself nor translate the abstract from Chinese. But judging from the title and the formulae it was clear that they found better bounds than the sequence in the database. My readers got excited and tried to fix the sequence. David Reynolds improved on Konstantin’s results with a solution for 6 mints with 29 coins and for 7 mints with 52 coins. David did even better on his next try with 28 and 51 coins correspondingly. He also found a solution with 90 coins for 8 mints. Moreover, his exhaustive search proved that these were the best solutions.

Now the sequence in the database is fixed. It starts 1, 2, 4, 8, 15, 28, 51, 90.

For future generations I would like to support each number of the sequence by an example. I use the set P(Q) to represent the sequence of how many coins are taken from each mint for the first(second) weighing. For one mint, only one coin and one weighing is needed. ApSimon himself calculated the first five values, so they were not in dispute.

  • a(2) = 2: P=(1,0) and Q=(0,1). Found by ApSimon.
  • a(3) = 4: P=(0,1,2) and Q=(1,1,0). Found by ApSimon.
  • a(4) = 8: P=(0,1,2,3) and Q=(1,0,2,2) or P=(0,1,1,4), Q=(2,0,1,1). Found by ApSimon.
  • a(5) = 15: P=(0,1,1,4,5) and Q=(2,1,2,5,0). Found by ApSimon.
  • a(6) = 28: P=(1,2,2,5,5,0) and Q=(0,1,2,1,8,10). Found by Robert Israel, Richard J. Mathar, and David Reynolds,
  • a(7) = 51. P=(2,3,7,2,8,12,0) and Q=(0,2,1,7,7,12,12). Found by David Applegate and David Reynolds.
  • a(8) = 90. P=(4,6,6,7,3,13,15,3) and Q=(4,0,1,6,12,12,1,27). Found by David Applegate and David Reynolds.

There is a solution for nine mints using 193 coins that is not confirmed to be optimal. It was found by David Reynolds: P=(1,2,4,12,5,4,20,39,43) and Q=(0,1,3,3,25,33,34,18,27). In addition, David Reynolds provided a construction that reduces the upper bound for n mints to (3(n+1)−2n−3)/4. The following set of coins work: P=(1,3,7,15,…,2n−1) and Q=(1,4,13,40,…,(3n−1)/2).


My Blog is Still under Attack

Recently I wrote that my blog is under attack by spam comments. Most of the comments were caught by my spam-filter Akismet, the best-known filter for WordPress. I was receiving about 50,000 comments a day and 200 of them were sneaking through this filter. I had to moderate those and delete them. This was an extreme waste of my time. But I can understand that the bots achieved some goal. None of their comments made it to my website, but at least I myself was made aware of opportunities for hair removal in Florida.

The comments crashed my server and I had to install CAPTCHAs. I was happy that the number of comments that I had to moderate went down, but the total number of comments was still so high that my server kept crashing. Now that the comments are blocked from human view, why are they still pouring in? One software package is trying to inform the other software package about weight-loss wonder drugs. I am convinced that Akismet is not interested.

My hosting provider couldn’t handle the traffic and asked me to upgrade to a more advanced hosting package. It’s annoying that I have to pay a lot of money for these bots’ attempts to sell Akismet fake Louis Vuitton bags.

The upgrade was too expensive, so I tried a different solution. I closed comments for older posts. It didn’t help. The bad software continued trying to leave comments that can’t be left. They especially like my post about Cech cycles, called A Mysterious Bracelet. My weblog tells me that every second someone downloads this page and tries to leave a comment. But no one will ever see these comments. Even Akismet will never know what it is missing: it might have had a chance to make $5,000 a day from home.


No Averages Solution

I recently posted the following old Olympiad problem:

Prove that you can choose 2k numbers from the set {1, 2, 3, …, 3k−1} in such a way that the chosen set contains no averages of any two of its elements.

Let me show how to find 2k − 1 such numbers. We can pick all the numbers that have 0 or 1 in their ternary representation. Let me prove that this set doesn’t contain averages. Summing two such numbers doesn’t involve carry, and the sum will contain a 1 in each place where the digits differ. On the other hand, a double of any number in this set doesn’t contain ones.

This solution is pretty, but it is not good enough: we need one more number. We can add the number 3k−1. I will leave it to the reader to prove that the largest number in the group whose binary representation consists only of twos can be added without any harm.

There are other ways to solve this problem. It is useful to notice that multiplying a no-average set by a constant or adding a constant to it, doesn’t change the no-average property.

If we were allowed to use 0, then the problem would have been solved. As zero doesn’t belong to the initial range, we can add zero and shift everything by 1. The resulting sequence is sequence A3278. This sequence is the lexicographically first non-averaging sequence.

Another solution was suggested by devjoe in my livejournal mirror blog site. If we multiply our non-averaging set (the one that doesn’t have twos in their ternary representation) by 2, we get a set of all numbers that do not contain ones in their ternary representation. By linearity, such a set doesn’t contain averages either. We can add 1 to this set.


Intel ISEF Mathematics Awards 2014

The Intel International Science and Engineering Fair announced 2014 Grand Awards. I worked with three out of the top five mathematical award winners. Now I can brag that I’ve got my finger in more than half of the world’s best high-school math research.

To be clear: I wasn’t actually mentoring these projects, but I supervised two of the projects and I trained the third student for several years. So I’m proud to list the award-winning papers:

How interesting that each of these three students is from a different part of my present career. It certainly feels that I am in all the right places.


Some Jokes

* * *

A mathematical tragedy: two parallel lines fall in love.

* * *

Life is not fair, even among gadgets: the desktop misbehaves, the monitor gets smacked.

* * *

An amazing magic trick! Think of a number, add 5 to it, then subtract 5. The result is the number you thought of!

* * *

—How can you distinguish a mathematician from a physicist?
—Ask for an antonym for the word parallel.
—A mathematician will answer perpendicular, and a physicist serial.

* * *

—How can you distinguish a physicist from a mathematician?
—Ask the person to walk around a post.
—A physicist will ask why, and a mathematician clockwise or counter-clockwise?

* * *

—Some bike thief managed to open my combination lock. How could they possibly guess that the combo was the year of the canonization of Saint Dominic by Pope Gregory IX at Rieti, Italy?
—What year was that?

* * *

—Hello? Is this the anonymous FBI tip-line?
—Yes, Mr. Benson.

* * *

—My five-year-old son knows the first 20 digits of Pi.
— I use it as the password on my laptop, where I keep all the games.

* * *

I learned three things in school: how to rite and how to count.


Crypto Word Search II

I recently published a crypto word search puzzle: a word search puzzle where all the letters are encrypted by a substitution cypher. The answer to such a puzzle is a word or a phrase formed by those decrypted letters that are not in the hidden words.

Crypto Word Search 2

The puzzle I posted was easy. It can be solved by analyzing the repeated letters in the hidden words. The new puzzle is more difficult. No hidden word has repeated letters.

The hidden words are: FUN, HUNT, SOLVE, STARK, TABLE, THINK.