Archive for the ‘Weighings’ Category.

Heavier or Lighter

In my old essay I presented the following coin problem.

We have N coins that look identical, but we know that exactly one of them is fake. The genuine coins all weigh the same. The fake coin is either lighter or heavier than a real coin. We also have a balance scale. Unlike in classical math problems where you need to find the fake coin, in this problem your task is to figure out whether the fake coin is heavier or lighter than a real coin. Your challenge is that you are only permitted to use the scale twice. Find all numbers N for which this can be done.

Here is my solution to this problem. Let us start with small values of N. For one coin you can’t do anything. For two coins there isn’t much you can do either. I will leave it to the readers to solve this for three coins, while I move on to four coins.

Let us compare two coins against the other two. The weighing has to unbalance. Then put aside the two coins from the right pan and compare one coin from the left pan with the other coin from the left pan. If they balance, then the right pan in the first weighing contained the fake coin. If they are unbalanced then the left pan in the first weighing contained the fake coin. Knowing where the fake coin was in the first weighing gives us the answer.

It is often very useful to go through the easy cases. For this problem we can scale the solution for three and four coins to get a solution for any number of coins that is divisible by three and four by just grouping coins accordingly. Thus we have solutions for 3k and 4k coins.

For any number of coins we can try to merge the solutions above. Divide all coins into three piles of size a, a and b, where a ≤ b ≤ 2a. In the first weighing compare the first two piles. If they balance, then the fake coin must be among the b remaining coins. Now pick any b coins from both pans in the first weighing and compare them to the remaining b coins. If the first weighing is unbalanced, then the remaining coins have to be real. For the second weighing we can pick a coins from the remaining pile and compare them to one of the pans in the first weighing.

The solution I just described doesn’t cover the case of N = 5. I leave it to my readers to explain why and to solve the problem for N = 5.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

Ten Coins

Among ten given coins, some may be real and some may be fake. All real coins weigh the same. All fake coins weigh the same, but have a different weight than real coins. Can you prove or disprove that all ten coins weigh the same in three weighings on a balance scale?

When I first received this puzzle from Ken Fan I thought that he mistyped the number of coins. The solution for eight coins was so easy and natural that I thought that it should be eight — not ten. It appears that I was not the only one who thought so. I heard about a published paper with the conjecture that the best you can do is to prove uniformity for 2n coins in n weighings.

I will leave it to the readers to find a solution for eight coins, as well as for any number of coins less than eight. I’ll use my time here to explain the solution for ten coins that my son Sergei Bernstein suggested.

First, in every weighing we need to put the same number of coins in both pans. If the pans are unbalanced, the coins are not uniform; that is, some of them are real and some of them are fake. For this discussion, I will assume that all the weighings are balanced. Let’s number all coins from one to ten.

Consider two sets. The first set contains only the first coin and the second set contains the second and the third coins. Suppose the number of fake coins in the first set is a and a could be zero or one. The number of fake coins in the second set is b where b is zero, one or two. In the first weighing compare the first three coins against coins numbered 4, 5, and 6. As they balance the set of coins 4, 5, and 6 has to have exactly a + b fake coins.

In the second weighing compare the remaining four coins 7, 8, 9, and 10 against coins 1, 4, 5, and 6. As the scale balances we have to conclude that the number of fake coins among the coins 7, 8, 9, and 10 is 2a + b.

For the last weighing we compare coins 1, 7, 8, 9, and 10 against 2, 3, 4, 5, and 6. The balance brings us to the equation 3a + b = a + 2b, which means that 2a = b. This in turn means that either a = b = 0 and all the coins are real, or that a = 1, and b = 2 and all the coins are fake.

Now that you’ve solved the problem for eight and less coins and that I’ve just described a solution for ten coins, can we solve this problem for nine coins? Here is my solution for nine coins. This solution includes ideas of how to use a solution you already know to build a solution for a smaller number of coins.

Take the solution for ten coins and find two coins that are never on the same pan. For example coins 2 and 10. Now everywhere where we need 10, use 2. If we need both of them on different pans, then do not use them at all. The solution becomes:

The first weighing is the same as before with the same conclusion. The set containing the coin 1 has a fake coins, the set containing the coins 2 and 3 has b fake coins and the set containing coins 4, 5, and 6 has to have exactly a + b fake coins.

In the second weighing compare the four coins 7, 8, 9, and 2 against 1, 4, 5, and 6. As the scale balances we have to conclude that the number of fake coins among 7, 8, 9, and 2 is 2a + b.

For the last weighing we compare coins 1, 7, 8, and 9 against 3, 4, 5, and 6. If we virtually add the coin number 2 to both pans, the balance brings us to the equation 3a + b = a + 2b, which means that 2a = b. Which in turn means, similar to above, that either all the coins are real or all of them are fake.

It is known (see Kozlov and Vu, Coins and Cones) that you can solve the same problem for 30 coins in four weighings. I’ve never seen an elementary solution. Can you provide one?

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

Modern Coin-Weighing Puzzles

I usually give a lot of lectures and I never used to announce them in my blog. This time I will give a very accessible lecture at the MIT “Women in Mathematics” series. It will be on Wednesday October 6th at 5:30-6:30 PM in room 2-135. If you are in Boston, feel free to join. Here is the abstract.

I will discuss several coin-weighing puzzles and related research. Here are two examples of such puzzles:

1. Among 10 given coins, some may be real and some may be fake. All real coins weigh the same. All fake coins weigh the same, but have a different weight than real coins. Can you prove or disprove that all ten coins weigh the same in three weighings on a balance scale?

2. Among 100 given coins, four are fake. All real coins weigh the same. All fake coins weigh the same, but they are lighter than real coins. Can you find at least one real coin in two weighings on a balance scale?

You are not expected to come to my talk with the solutions to the above puzzles, but you are expected to know how to find the only fake coin among many real coins in the minimum number of weighings.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

The Weights Puzzle

From the 1966 Moscow Math Olympiad:

Prove that you can choose six weights from a set of weights weighing 1, 2, …, 26 grams such that any two subsets of the six have different total weights. Prove that you can’t choose seven weights with this property.

Let us define the sequence a(n) to be the largest size of a subset of the set of weights weighing 1, 2, …, n grams such that any subset of it is uniquely determined by its total weight. I hope that you agree with me that a(1) = 1, a(2) = 2, a(3) = 2, a(4) = 3, and a(5) = 3. The next few terms are more difficult to calculate, but if I am not mistaken, a(6) = 3 and a(7) = 4. Can you compute more terms of this sequence?

Let’s see what can be said about upper and lower bounds for a(n). If we take weights that are different powers of two, we are guaranteed that any subset is uniquely determined by the total weight. Thus a(n) ≥ log2n. On the other hand, the total weight of a subset has to be a number between 1 and the total weight of all the coins, n(n+1)/2. That means that our set can have no more than n(n+1)/2 subsets. Thus a(n) ≤ log2(n(n+1)/2).

Returning back to the original problem we see that 5 ≤ a(26) ≤ 8. So to solve the original problem you need to find a more interesting set than powers of two and a more interesting counting argument.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

My First Polymath Project

Background and Definitions

I’ve heard about many mathematicians running polymath projects through their blogs. I wasn’t planning to do that. It just happened. In this essay, I describe the collaborative effort that was made to solve the following problem that appeared in my blog on July 2009:

Baron Münchhausen has n identical-looking coins weighing 1, 2, …, n grams. The Baron’s guests know that he has this set of coins, but do not know which one is which. The Baron knows which coin is which and wants to demonstrate to his guests that he is right. He plans to conduct weighings on a balance scale, so that the guests will be convinced about the weight of every of coin. What is the smallest number of weighings that the Baron must do in order to reveal the weights?

The sequence a(n) of the minimal number of weighings is called the Baron Münchhausen’s omni-sequence to distinguish it from the Existential Baron’s sequence where he needs the smallest amount of weighings to prove the weight of one coin of his choosing.

In this essay I will describe efforts to calculate a(n). The contributors are: Max Alekseyev, Ilya Bogdanov, Maxim Kalenkov, Konstantin Knop, Joel Lewis and Alexey Radul.

Starting Examples: n = 1, n = 2 and n = 3

The sequence starts as a(1) = 0, because there is nothing to demonstrate. Next, a(2) = 1, since with only one weighing you can find which coin is lighter.

Next, a(3) = 2. Indeed you can’t prove all the coins in one weighing, but in the first weighing you can show that the 1-gram coin is lighter than the 2-gram coin. In the second weighing you can show that the 2-gram coin is lighter than the 3-gram coin. Thus, in two weighings you can establish an order of weights and prove the weight of all three coins.

n = 4 and the Tightness Conjecture

As you can see in the case of n = 3, you can compare coins in order and prove the weight of all the coins in n − 1 weighings. But this is not at all the optimal number. Let us see why a(4) = 2. In his first weighing the Baron can put the 1- and the 2-gram coins on the left pan of the balance and the 4-gram coin on the right pan. In the future, I will just describe that weighing as 1 + 2 < 4. This way everyone agrees that the coin on the right pan is 4 grams, and the coin that is left out is 3 grams. The only thing that is left to do is to compare the 1-gram and the 2-gram coins in the second weighing.

Later Konstantin Knop sent me a different solution for n=4. His solution provides an interesting example. While looking for solutions, people usually try to have an unbalanced weighing to be “tight”. That is, they make it so that the heavier cup is exactly 1 gram heavier than the lighter cup. If you are trying to prove one coin in one weighing, “tightness” is a requirement. But it is not necessary when you have several weighings. Here is the first weighing in Konstantin’s solution: 1 + 3 = 4; and his second second weighing is: 1 + 2 < 3 + 4. We see that the second weighing has a weight difference of four between pans.

n = 5 and n = 6

Next, a(5) = 2. We can have the first weighing the same as before: 1 + 2 < 4, and the second weighing: 1 + 4 = 5. The second weighing confirms that the heavy coin on the right pan in the first weighing can’t be the heaviest one, thus it has to be the 4-gram coin. After that you can see that every coin is identified.

Next, a(6) = 2. The first weighing, 1 + 2 + 3 = 6, divides all coins into three groups: {1,2,3}, {4,5} and {6}. We know to which group each coin belongs, but we do not know which coin in the group is which. The second weighing: 1 + 6 < 3 + 5, identifies every coin. Indeed, the only possibility for the left side to weigh less than the right side is when the smallest weighing coin from the first group and 6 are on the left, and the two largest weighing coins from the first two groups are on the right.

The Lower Bound and n = 10, n = 11

When I was writing my essay I suspected that n = 6 is the largest number for which a solution can be established in two weighings, but I didn’t have any proof. So I was embarrassed to show my solutions of three weighings n equals 7, 8 and 9.

On the other hand I published the solutions suggested by my son, Alexey Radul, for n = 10 and n = 11. In these cases the theoretical lower bound of log3(n) for a(n) is equal to 3, and finding solutions in three weighings was enough to establish the value of the sequence a(n) for n = 10 and n = 11.

So, a(10) = 3, and here are the weighings. The first weighing is 1 + 2 + 3 + 4 = 10. After this weighing, we can divide the coins into three groups {1,2,3,4}, {5,6,7,8,9} and {10}. The second weighing is 1 + 5 + 10 < 8 + 9. After the second weighing we can divide all coins into groups we know they belong to: {1}, {2,3,4}, {5}, {6,7}, {8,9} and {10}. The last weighing contains the lowest weighing coin from each non-single-coin group on the left and the largest weighing coin on the right, plus, in order to balance them, the coins whose weights we know. The last weighing is 2 + 6 + 8 + 5 = 4 + 7 + 9 + 1.

Similarly, a(11) = 3, and the weighings are: 1 + 2 + 3 + 4 < 11; 1 + 2 + 5 + 11 = 9 + 10; 6 + 9 + 1 + 3 = 8 + 4 + 2 + 5.

An Exhaustive Search and a Mystery Solution for n = 6

After publishing my blog I wrote a letter to the Sequence Fans mailing list asking them to expand the sequence. Max Alekseyev replied with the results of an exhaustive search program he wrote. First of all, he found a counter-intuitive solution for n=6. Namely, the following two weighings: 1 + 3 < 5 and 1 + 2+ 5 < 3 + 6. He also confirmed that it is not possible to identify the coins in two weighings for n=7, n=8 and n=9.

Many Interesting Examples for n = 7

So now I can stop being embarrassed and proudly present my solution for n=7 in three weighings. That is, a(7) = 3 and the first weighing is: 1+2+3 < 7, and it divides all the coins into three groups {1,2,3}, {4,5,6} and 7. The second weighing, 1 + 4 < 6, divides them even further. Now we know the identity of every coin except the group {2,3}, which we can disambiguate with the third weighing: 2 < 3.

In many solutions that I’ve seen, one of the weighings was very special: every coin on one cup was lighter than every coin on the other cup. I wondered if that was always the case. Konstantin Knop send me a counterexample for n=7. The first weighing is: 1 + 2 + 3 + 5 = 4 + 7. The second is: 1 + 2 + 4 < 3 + 5. The third is: 1 + 3 + 4 = 2 + 6.

Later Max Alekseyev sent me two more special solutions for n=7. The first one contains only equalities: 2 + 5 = 7; 1 + 2 + 4 = 7; 1 + 2 + 3 + 5 = 4 + 7. The second one contains only inequalities: 1 + 3 < 5; 1 + 2 + 5 < 3 + 6; 5 + 6 < 2 + 3 + 7.

n = 8

Moving to the next index, a(8) = 3 and the first weighing is: 1 + 2 + 3 + 4 + 5 < 7 + 8. The second weighing is: 1 + 2 + 5 < 4 + 6. After that we have identified all coins but two groups {1,2} and {3,4} that can be resolved by 2 + 4 = 6.

More Examples and a Paper

Meanwhile my blog received a comment from Konstantin Knop who claimed that he found solutions in three weighings for n in the range between 12 and 17 inclusive and four weighings for n = 53. I had already corresponded with Konstantin and knew that his claims are always well-founded, so I didn’t doubt that he had found the solutions.

Later I began to write a paper with Joel Lewis on the upper bound of the omni-sequence, where we prove that a(n) ≤ 2 ⌈log2n⌉. For this paper, we wanted a comprehensive set of examples, so I emailed Konstantin asking him to write up his solutions. He promptly sent me the results and mentioned that he had found the weighings together with Ilya Bogdanov. They used several different ideas in the solutions. First I’ll describe their solutions based on ideas we’ve already seen, namely to compare the lightest coins in the range to the heaviest coins.

n = 13 and n = 15

Here is the proof that a(13) = 3. The first weighing is: 1 + … + 8 = 11 + 12 + 13, and it identifies the groups {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10} and {11, 12, 13}. The second weighing is: (1 + 2 + 3) + 9 + (11 + 12) = (7 + 8) + 10 + 13, and it divides them further into groups {1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}, {11, 12}, {13}. And the last weighing identifies all the coins: 1 + 4 + 7 + 11 + 9 + 10 = 3 + 6 + 8 + 12 + 13.

Similarly, let us show that a(15) = 3. The first weighing is: 1 + … + 7 < 14 + 15, and it divides the coins into three groups {1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13}, and {14, 15}. The second weighing is: (1 + 2 + 3) + 8 + (14 + 15) = (5 + 6 + 7) + (12 + 13), and this divides them further into groups {1, 2, 3}, {4}, {5, 6, 7}, {8}, {9, 10, 11}, {12, 13} and {14, 15}. The third weighing identifies every coin: 1 + 5 + 8 + 9 + 12 + 14 = 3 + 7 + 11 + 13 + 15.

n = 9 and n = 12: Heaviest vs Lightest. Almost, but not Quite

As I mentioned earlier it is not always possible to find the first weighing which will nicely divide the coins into groups. We already discussed an example, n = 5, in which neither of the two weighings divided the coins into groups. Likewise, the same thing happened in the second mysterious solution for n = 6. What these solutions have in common is that the first weighing nearly divides everything nicely. The left pan is almost the set of the lightest coins and the right pan is almost the set of the heaviest coins. But not quite.

That is not our only situation in which the first weighing does not quite divide the coins into groups. For example, here is Konstantin’s solution for a(9) = 3. For the first weighing, we put five coins on the left pan and two coins on the right pan. The left pan is lighter. This could happen in three different ways:

  1. 1 + 2 + 3 + 4 + 5 < 8 + 9 (out 6 and 7)
  2. 1 + 2 + 3 + 4 + 5 < 7 + 9 (out 6 and 8)
  3. 1 + 2 + 3 + 4 + 6 < 8 + 9 (out 5 and 7)

The second weighing, 1 + 2 + 3 = 6, in which we took three coins from the left pan and balanced them against one coin – again from the left pan – could only happen in case “C.” After the two weighings, the following groups were identified: {1, 2, 3}, {4}, {5, 7}, {6}, {8, 9}. The third weighing, 1 + 4 + 5 + 8 < 3 + 7 + 9, identifies all the coins.

A similar technique is used in the solution that Konstantin sent to us to demonstrate that a(12) = 3. The first weighing is: 1 + 2 + 3 + 4 + 5 + 6 < 10 + 12. The audience which sees the results of the weighings understands that there are three possibilities for the distribution of coins:

  1. 1 + 2 + 3 + 4 + 5 + 6 < 10 + 12
  2. 1 + 2 + 3 + 4 + 5 + 6 < 11 + 12
  3. 1 + 2 + 3 + 4 + 5 + 7 < 11 + 12

The second weighing, (1 + 2 + 3) + (7 + 8) + 10 < (9 + 11 ) + 12, convinces the audience that the left pan must weigh at least 31 if the first weighing was case “A” above (31 = 1 + 2 + 3 + 7 + 8 + 10) or “C” (31 = 1 + 2 + 3 + 6 + 8 + 11), and at least 32 (32 = 1 + 2 + 3 + 7 + 8 + 11) if the first weighing was case “B.” At the same time the right pan is not more than 12 + 9 + 11 = 32 for case “A” above, not more than 12 + 9 + 10 = 31 for case “B” and not more than 12 + 9 + 10 = 31 for case “C.”

Hence the inequality in the second weighing is only possible when the first weighing was indeed as described by case “A” above. Consequently, the first two weighings together identify groups: {1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}, {11} and {12}. The third weighing, 1 + 4 + 7 + 11 + 12 < 3 + 6 + 8 + 9 + 10, identifies all the coins.

Rearrangement Inequality: n = 6, n = 14, n = 16, n = 17 and n = 53

Other cases that Konstantin Knop sent me used a completely different technique. I would like to explain this technique using the mysterious solution for n = 6 found by Max Alekseyev. Suppose we have six coins labeled c1, … c6. The first weighing is: c1 + c3 < c5. The second weighing is: c1 + c2 + c5 < c3 + c6.

Let us prove that these two weighings identify all the coins. Let us replace the two inequalities above with the following: c1 + c3c5 ≤ −1, and c1 + c2 + c5c3c6 ≤ −1. Now we multiply the first inequality by 3 and the second by 2 and sum the results. We get: 5c1 + 2c2 + c3 + 0c4c5 − 2c6 ≤ −5. Note that the coefficients for labels are in a decreasing order. By the rearrangement inequality the smallest value the expression 5c1 + 2c2 + c3 + 0c4c5 − 2c6 reaches is when the labels on the coins match the indices. This smallest value is −5. Hence, the labels have to match the coins.

The technique that Konstantin and his collaborators are using is to search for appropriate coefficients to multiply the weighings by, rather than searching for the weighings themselves. In lieu of lengthy explanations, I will just list the weighings that he uses together with coefficients to multiply them by for their proof that the weighings differentiate coins.

We will start with showing that a(14) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9 < 11 + 13 + 14, and: 1 + 2 + 3 + 8 + 11 + 13 = 7 + 9 + 10 + 12, followed by 1 + 4 + 7 + 10 = 3 + 6 + 13. The coefficients to multiply by are {9, 5, 2}.

Next we will show that a(16) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 6 + 8 < 14 + 16, and 1 + 2 + 3 + 7 + 9 + 14 = 8 + 13 + 15, followed by 1 + 4 + 7 + 10 + 13 < 3 + 6 + 12 + 15. The coefficients to multiply by are {11, 5, 2}.

Next we will show that a(17) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9 + 10 < 15 + 16 + 17, and 1 + 2 + 3 + 8 + 11 + 15 + 16 < 7 + 9 + 10 + 14 + 17, and 1 + 4 + 7 + 8 + 12 + 14 = 3 + 6 + 10 + 11 + 16. The coefficients to multiply by are {11, 5, 2}.

Next we will show that a(53) = 4. The weighings are: (1 + 2 + … + 23) + 25 < 47 + (49 + … + 53), and (1 + … + 9) + 24 + (26+ … + 31) + 47 + (49 + … + 52) < (16 + … + 23) + 25 + (41 + … + 46) + 48 + (51 + 52), and (1 + 2 + 3) + (10 + 11) + (16 + 17 + 18) + 24 + (26 + 27) + (32 + 33 + 34) + (41 + 42 + 43) + 47 + 49 + 53 =(7 + 8 + 9) + 15 + (22 + 23) + 25 + (30 + 31) + (38 + 39) + 40 + (45 + 46) + 48 + (51 + 52), and the last one 1 + 4 + 7 + 10 + 12 + 16 + 19 + 22 + 24 + 28 + 30 + 32 + 35 + 38 + 41 + 45 + 47 + 51 + 53 < 3 + 6 + 9 + 11 + 14 + 18 + 21 + 25 + 27 + 29 + 34 + 37 + 40 + 43 + 48 + 49 + 50 + 52. The coefficients to multiply by are {43, 15, 5, 2}.

The Search Continues for n = 18 and n = 19

When I was working on the paper with Joel Lewis I re-established my email discussions about the Baron’s onmi-sequence with Konstantin Knop. At that time Konstantin’s colleague, Maxim Kalenkov, got interested in the subject and wrote a computer search program to find other solutions that can be proven with the rearrangement inequality. Thus, we know two more terms of this sequence.

The next known term is a(18) = 3. The weighings are: 1 + 2 + 4 + 5 + 7 + 10 + 12 = 9 + 15 + 17, and 1 + 3 + 4 + 6 + 9 + 11 + 17 = 7 + 12 + 14 + 18, and 2 + 3 + 7 + 8 + 9 + 14 + 15 = 4 + 10 + 11 + 16 + 17. The corresponding coefficients are: {8, 7, 5}.

Similarly, a(19) = 3. The weighings are: 1 + 2 + 3 + 4 + 5 + 7 + 8 + 10 + 13 = 16 + 18 + 19, and 1 + 2 + 3 + 6 + 9 + 11 + 16 = 8 + 10 + 13 + 17, and 1 + 4 + 6 + 8 + 12 + 18 = 3 + 7 + 11 + 13 + 15. The coefficients are {12, 7, 3}.

Solutions in Four Weighing for n from 20 to 58

Maxim Kalenkov continued his search. He didn’t find any new solutions in three weighings, but he found a lot of solutions in four weighings, namely for numbers from 20 to 58. Below are his solutions, with multiplier coefficients in front of every weighing:

a(20) ≤ 4
18: 1+2+3+4+5+10+14+16+18 = 6+7+11+12+17+20
19: 1+2+4+5+12+15+17+19 < 6+8+10+14+18+20
21: 2+6+11+17+18 = 4+9+10+15+16
26: 1+6+7+8+9+10+20 = 2+5+17+18+19

a(21) ≤ 4
18: 3+5+6+11+15+17+19 = 7+8+9+13+18+21
19: 4+6+9+13+16+18+20 = 1+7+11+12+15+19+21
21: 1+4+5+7+12+18+19 = 3+9+10+11+16+17
26: 1+2+3+7+8+9+10+11+21 = 4+5+6+18+19+20

a(22) ≤ 4
18: 3+5+6+12+15+17+20 = 7+8+10+13+18+22
19: 1+2+4+10+13+16+18+21 = 7+9+12+15+20+22
21: 1+6+7+18+19+20 = 2+3+10+11+12+16+17
26: 2+3+7+8+9+10+11+12+22 = 6+18+19+20+21

a(22) ≤ 4
18: 1+2+5+6+12+16+18+22 < 3+7+8+10+13+19+23
19: 1+3+4+6+10+17+19+21 = 7+9+12+14+16+23
21: 3+7+13+14+19+20 = 2+6+10+11+12+17+18
26: 2+7+8+9+10+11+12+23 = 19+20+21+22

a(24) ≤ 4
18: 1+3+6+12+17+19+21+23 < 2+4+7+8+10+13+15+20+24
19: 1+2+4+5+6+10+15+18+20+22 < 7+9+12+14+17+21+24
21: 4+7+13+14+20+21 = 3+6+10+11+12+18+19
26: 2+3+7+8+9+10+11+12+24 = 20+21+22+23

a(25) ≤ 4
18: 1+2+3+5+6+8+9+14+17+19+22 < 10+12+16+20+24+25
19: 2+6+7+9+12+16+18+20+23 = 10+11+14+15+17+22+24
21: 1+2+4+7+8+10+15+20+21+22 = 3+6+12+13+14+18+19+25
26: 3+10+11+12+13+14+24+25 = 2+7+8+9+20+21+22+23

a(26) ≤ 4
18: 1+2+3+5+6+8+9+14+18+20+23 = 10+12+15+21+25+26
19: 2+3+4+6+7+9+12+19+21+24 = 11+14+16+18+23+25
21: 7+8+15+16+21+22+23 = 2+6+12+13+14+19+20+26
26: 1+2+10+11+12+13+14+25+26 = 7+8+9+21+22+23+24

a(27) ≤ 4
18: 1+3+4+6+7+8+9+14+19+21+23+25 < 10+11+13+15+17+22+26+27
19: 1+2+3+5+7+9+13+17+20+22+24 < 4+10+12+14+16+19+23+26
21: 2+3+4+8+10+15+16+22+23 = 1+7+13+14+20+21+27
26: 1+10+11+12+13+14+26+27 = 3+8+9+22+23+24+25

a(28) = 4
18: 3+6+8+9+10+15+19+21+24+26 = 1+5+11+13+16+18+22+27+28
19: 1+4+5+7+9+10+13+18+20+22+25 = 3+6+11+12+15+17+19+24+27
21: 5+6+11+16+17+22+23+24 = 4+9+13+14+15+20+21+28
26: 1+2+3+4+11+12+13+14+15+27+28 = 10+22+23+24+25+26

a(29) = 4
18: 1+3+5+6+7+9+10+16+20+22+25+27 < 11+12+14+17+18+23+28+29
19: 4+8+10+14+18+21+23+26 = 2+3+6+11+13+16+20+25+28
21: 1+2+6+8+9+11+17+23+24+25 = 4+5+14+15+16+21+22+29
26: 2+3+4+5+11+12+13+14+15+16+28+29 = 8+9+10+23+24+25+26+27

a(30) = 4
18: 2+8+10+16+21+23+26+27+28 = 5+11+12+14+17+19+24+29+30
19: 2+4+5+7+9+14+19+22+24+28 = 11+13+16+18+21+26+29
21: 1+5+6+9+10+11+17+18+24+25+26 = 4+14+15+16+22+23+28+30
26: 1+3+4+11+12+13+14+15+16+29+30 < 9+10+24+25+26+27+28

a(31) = 4
18: 1+2+6+9+10+16+21+23+26+28+29 < 3+4+7+11+12+14+17+19+24+30+31
19: 1+2+4+7+14+19+22+24+27+29 < 6+9+11+13+16+18+21+26+30
21: 2+3+7+8+9+11+17+18+24+25+26 = 14+15+16+22+23+29+31
26: 1+3+4+5+6+11+12+13+14+15+16+30+31 = 2+24+25+26+27+28+29

a(32) = 4
18: 1+5+8+9+10+12+13+22+24+27+29 = 6+14+16+18+20+25+30+31
19: 4+6+10+11+13+16+20+23+25+28 = 1+2+8+15+19+22+27+30+32
21: 1+2+6+7+8+11+12+18+19+25+26+27 = 4+5+10+16+17+23+24+31+32
26: 1+2+3+4+5+14+15+16+17+30+31+32 < 11+12+13+25+26+27+28+29

a(33) = 4
18: 1+2+6+7+8+9+10+12+13+23+27+29+30 = 3+14+15+17+19+21+25+31+32
19: 1+2+10+11+13+17+21+24+25+28+30 = 4+6+8+14+16+20+23+27+31+33
21: 1+3+4+8+11+12+14+19+20+25+26+27 < 7+10+17+18+24+30+32+33
26: 3+4+5+6+7+14+15+16+17+18+31+32+33 = 11+12+13+25+26+27+28+29+30

a(34) = 4
18: 2+3+4+8+10+12+13+19+24+28+30+31 < 6+14+15+17+20+22+26+32+33
19: 1+2+3+5+6+9+11+13+17+22+25+26+29+31 = 4+8+14+16+19+21+24+28+32+34
21: 1+3+6+7+8+11+12+14+20+21+26+27+28 = 2+5+17+18+19+25+31+33+34
26: 1+2+4+5+14+15+16+17+18+19+32+33+34 = 3+11+12+13+26+27+28+29+30+31

a(35) = 4
18: 1+3+4+6+8+10+11+13+19+24+26+29+31+32 = 14+15+17+20+22+27+33+34+35
19: 1+4+7+9+11+12+17+22+25+27+30+32 = 6+14+16+19+21+24+29+33+35
21: 2+12+13+14+20+21+27+28+29+35 = 4+7+8+11+17+18+19+25+26+32+34
26: 1+2+3+4+5+6+7+8+14+15+16+17+18+19+33+34 = 12+13+27+28+29+30+31+32

a(36) = 4
18: 1+2+3+4+5+9+11+12+14+15+20+25+29+31+32 < 6+16+18+21+23+27+33+34+36
19: 1+2+4+5+6+8+10+12+13+15+18+23+26+27+30+32 < 16+17+20+22+25+29+33+35+36
21: 1+3+5+13+14+16+21+22+27+28+29+36 = 2+8+9+12+18+19+20+26+32+34+35
26: 2+6+7+8+9+16+17+18+19+20+33+34+35 = 5+13+14+15+27+28+29+30+31+32

a(37) = 4
18: 1+2+3+6+8+10+12+13+15+16+21+27+30+32+33 = 4+9+17+19+22+24+28+34+35+37
19: 1+2+3+7+9+11+13+14+16+19+24+26+28+31+33 = 5+6+10+17+18+21+23+30+34+36+37
21: 3+4+5+9+10+14+15+17+22+23+28+29+30+37 = 1+7+8+13+19+20+21+26+27+33+35+36
26: 1+4+5+6+7+8+17+18+19+20+21+34+35+36 = 3+14+15+16+28+29+30+31+32+33

a(38) = 4
18: 2+3+4+7+9+11+13+15+16+21+26+28+31+33+34 = 5+10+17+18+19+22+24+29+35+36+38
19: 1+3+4+8+10+12+13+14+16+19+24+27+29+32+34 = 7+11+17+21+23+26+31+35+37+38
21: 1+2+4+5+10+11+14+15+17+22+23+29+30+31+38 = 8+9+13+19+20+21+27+28+34+36+37
26: 5+6+7+8+9+17+18+19+20+21+35+36+37 = 4+14+15+16+29+30+31+32+33+34

a(39) = 4
18: 1+2+4+7+9+11+13+14+16+22+27+29+32+34+35 = 10+17+18+20+23+25+30+36+38+39
19: 2+3+4+8+10+12+14+15+20+25+28+30+33+35 = 5+7+11+17+19+22+24+27+32+37+38
21: 1+2+3+5+10+11+15+16+17+23+24+30+31+32+38 < 8+9+14+20+21+22+28+29+35+36+37
26: 1+5+6+7+8+9+17+18+19+20+21+22+36+37 = 15+16+30+31+32+33+34+35

a(40) = 4
18: 1+2+3+4+5+8+9+12+14+15+17+18+23+27+29+32+34+35 < 7+10+19+21+24+26+30+36+37+39+40
19: 1+3+4+5+7+10+13+15+16+18+21+26+28+30+33+35 < 6+8+12+20+23+25+27+32+36+38+39
21: 1+5+6+10+11+12+16+17+24+25+30+31+32+39 < 3+9+15+21+22+23+28+29+35+37+38
26: 2+3+6+7+8+9+19+20+21+22+23+36+37+38 = 5+16+17+18+30+31+32+33+34+35

a(41) = 4
18: 1+3+5+6+8+10+12+14+15+17+18+23+28+30+33+35+36 < 7+11+19+21+24+26+31+37+38+40+41
19: 1+2+4+5+6+7+9+11+13+15+16+18+21+26+29+31+34+36 = 8+12+19+20+23+25+28+33+37+39+40
21: 1+4+6+11+12+16+17+19+24+25+31+32+33+40 < 9+10+15+21+22+23+29+30+36+38+39
26: 2+3+7+8+9+10+19+20+21+22+23+37+38+39 = 6+16+17+18+31+32+33+34+35+36

a(42) = 4
18: 1+3+5+6+7+11+13+15+16+18+24+29+31+34+36+37 = 2+8+12+19+20+22+25+27+32+38+40+41
19: 1+2+4+6+7+10+12+14+16+17+18+22+27+30+32+35+37 = 3+13+19+21+24+26+29+34+39+40+42
21: 1+2+3+4+5+7+8+12+13+17+19+25+26+32+33+34+40 = 10+11+16+22+23+24+30+31+37+38+39
26: 2+3+8+9+10+11+19+20+21+22+23+24+38+39 = 7+17+18+32+33+34+35+36+37

a(43) = 4
18: 1+2+5+6+7+10+12+14+16+17+19+20+29+31+34+36+37 = 8+21+23+25+27+32+38+39+41+42
19: 2+4+5+6+7+8+11+15+17+18+20+23+27+30+32+35+37 = 10+14+22+26+29+34+38+40+41+43
21: 1+2+3+7+13+14+18+19+25+26+32+33+34+41 < 5+11+12+17+23+24+30+31+37+39+40
26: 1+3+4+5+8+9+10+11+12+21+22+23+24+38+39+40 < 7+18+19+20+32+33+34+35+36+37

a(44) = 4
18: 1+2+5+6+7+8+10+11+14+16+17+19+20+25+30+32+35+37+38 = 3+12+21+22+23+26+28+33+39+40+42+44
19: 1+2+3+7+8+12+15+17+18+20+23+28+31+33+36+38+44 = 9+10+14+21+25+27+30+35+39+41+42+43
21: 2+3+4+6+8+9+12+13+14+18+19+21+26+27+33+34+35+42 = 11+17+23+24+25+31+32+38+40+41+44
26: 1+3+4+5+9+10+11+21+22+23+24+25+39+40+41 = 8+18+19+20+33+34+35+36+37+38

a(45) = 4
18: 2+4+5+6+11+13+16+17+18+20+21+26+31+33+36+38+39 = 7+9+14+22+24+27+29+34+40+42+43+45
19: 1+2+4+6+9+12+14+18+19+21+24+29+32+34+37+39+45 = 8+11+16+23+26+28+31+36+40+41+42+44
21: 1+2+3+5+7+8+14+15+16+19+20+27+28+34+35+36+42 = 4+12+13+18+24+25+26+32+33+39+41+45
26: 1+3+4+7+8+9+10+11+12+13+22+23+24+25+26+40+41 = 19+20+21+34+35+36+37+38+39

a(46) = 4
18: 1+2+3+5+6+8+9+14+16+17+19+21+22+26+31+33+36+38+39 = 10+12+23+27+29+34+40+41+42+43+45
19: 2+4+6+7+8+9+12+15+18+20+22+29+32+34+37+39+45 = 3+11+14+17+23+24+26+28+31+36+40+42+44
21: 1+3+7+9+10+11+17+20+21+23+27+28+34+35+36+42 = 6+15+16+25+26+32+33+39+41+45+46
26: 1+2+3+4+5+6+10+11+12+13+14+15+16+23+24+25+26+40+41 = 9+20+21+22+34+35+36+37+38+39

a(47) = 4
18: 2+3+5+7+8+9+13+14+16+18+19+21+22+27+32+34+37+39+40 < 11+23+24+28+30+35+41+42+43+44+46
19: 1+3+6+7+8+9+11+17+19+20+22+30+33+35+38+40+46 < 5+10+13+16+23+25+27+29+32+37+41+43+45
21: 1+2+4+5+9+10+15+16+20+21+23+28+29+35+36+37+43 < 7+14+19+26+27+33+34+40+42+46+47
26: 1+2+3+4+5+6+7+10+11+12+13+14+23+24+25+26+27+41+42 < 9+20+21+22+35+36+37+38+39+40

a(48) = 4
18: 3+5+6+7+8+13+17+19+20+22+23+28+33+35+38+40+41 < 9+11+15+24+26+29+31+36+42+44+45+47
19: 1+4+6+8+11+14+15+18+20+21+23+26+31+34+36+39+41+47 < 3+10+13+17+24+25+28+30+33+38+42+43+44+46
21: 1+2+3+7+8+9+10+15+16+17+21+22+24+29+30+36+37+38+44 = 6+14+20+26+27+28+34+35+41+43+47+48
26: 1+2+3+4+5+6+9+10+11+12+13+14+24+25+26+27+28+42+43 = 8+21+22+23+36+37+38+39+40+41

a(49) = 4
18: 2+3+6+7+8+9+10+15+18+20+21+23+24+29+34+38+40+41+49 < 12+16+25+26+30+32+36+42+43+44+45+47
19: 1+3+5+7+9+10+12+14+16+19+21+22+24+32+35+36+39+41+47 < 11+18+25+27+29+31+34+38+42+44+46+49
21: 1+2+3+4+8+10+11+16+17+18+22+23+25+30+31+36+37+38+44 < 7+14+15+21+28+29+35+41+43+47+48+49
26: 1+2+4+5+6+7+11+12+13+14+15+25+26+27+28+29+42+43 = 10+22+23+24+36+37+38+39+40+41

a(50) = 4
18: 1+2+3+4+6+7+9+10+11+15+16+19+20+21+23+24+34+36+39+41+42+50 = 12+17+25+26+28+30+32+37+43+44+45+46+48
19: 2+3+5+7+8+10+11+17+21+22+24+28+32+35+37+40+42+48 = 4+13+15+19+25+27+31+34+39+43+45+47+50
21: 1+3+4+8+9+11+12+13+17+18+19+22+23+25+30+31+37+38+39+45 = 7+16+21+28+29+35+36+42+44+48+49+50
26: 1+2+4+5+6+7+12+13+14+15+16+25+26+27+28+29+43+44 = 11+22+23+24+37+38+39+40+41+42

a(51) = 4
18: 2+3+4+6+8+10+11+15+17+19+20+21+23+24+30+35+37+40+42+43+50 < 12+13+18+25+26+28+31+33+38+44+46+47+49+51
19: 1+3+4+7+9+11+13+16+18+21+22+24+28+33+36+38+41+43+49 < 6+15+19+25+27+30+32+35+40+45+46+48+50
21: 1+2+4+5+6+9+10+11+12+18+19+22+23+25+31+32+38+39+40+46+51 < 16+17+21+28+29+30+36+37+43+44+45+49+50
26: 1+2+3+5+6+7+8+12+13+14+15+16+17+25+26+27+28+29+30+44+45 < 11+22+23+24+38+39+40+41+42+43+51

a(52) = 4
18: 2+5+7+8+10+11+12+17+19+22+25+26+31+35+37+40+42+43+51 = 3+13+15+20+27+28+29+32+38+44+46+47+49+52
19: 1+2+3+6+8+9+11+12+15+18+20+23+24+26+29+36+38+41+43+49 = 5+14+17+22+27+31+33+35+40+45+46+48+51
21: 1+3+4+5+9+10+12+13+14+20+21+22+24+25+27+32+33+38+39+40+46+52 = 8+18+19+29+30+31+36+37+43+44+45+49+50+51
26: 1+2+3+4+5+6+7+8+13+14+15+16+17+18+19+27+28+29+30+31+44+45 = 12+24+25+26+38+39+40+41+42+43+52

a(53) = 4
18: 2+3+4+7+8+9+10+11+12+17+19+21+23+25+26+31+36+38+41+43+44+52 < 5+13+15+27+29+32+34+39+45+46+47+48+50+53
19: 1+3+4+5+9+11+12+15+18+22+23+24+26+29+34+37+39+42+44+50 = 7+14+17+21+27+28+31+33+36+41+45+47+49+52
21: 1+2+4+5+6+7+10+12+13+14+20+21+24+25+27+32+33+39+40+41+47+53 < 9+18+19+23+29+30+31+37+38+44+46+50+51+52
26: 1+2+3+5+6+7+8+9+13+14+15+16+17+18+19+27+28+29+30+31+45+46 = 12+24+25+26+39+40+41+42+43+44+53

a(54) = 4
18: 2+3+4+6+8+9+11+12+13+18+20+23+25+26+28+29+33+37+39+41+42+43+51 = 5+14+16+21+30+31+32+35+44+45+47+48+49+52+54
19: 1+3+4+5+7+9+10+12+13+16+19+21+24+26+27+29+32+35+38+43+49+54 < 6+15+18+23+30+33+34+37+41+44+46+47+51+53
21: 1+2+4+5+6+10+11+13+14+15+21+22+23+27+28+30+34+40+41+47+52+53 < 9+19+20+26+32+33+38+39+43+45+46+49+50+51
26: 1+2+3+5+6+7+8+9+14+15+16+17+18+19+20+30+31+32+33+44+45+46 < 13+27+28+29+40+41+42+43+52+53+54

a(55) = 4
18: 2+3+6+8+9+11+12+13+18+19+22+24+25+27+28+32+37+39+42+44+45+54 < 4+14+16+20+29+31+33+35+40+46+47+49+50+52+55
19: 1+2+3+4+7+9+10+12+13+16+20+23+25+26+28+31+35+38+40+43+45+52 < 6+15+18+22+30+32+34+37+42+46+48+49+51+54
21: 1+3+4+5+6+10+11+13+14+15+20+21+22+26+27+33+34+40+41+42+49+55 = 9+19+25+31+32+38+39+45+47+48+52+53+54
26: 1+2+4+5+6+7+8+9+14+15+16+17+18+19+29+30+31+32+46+47+48 = 13+26+27+28+40+41+42+43+44+45+55

a(56) = 4
18: 2+3+4+7+9+10+12+13+14+18+20+23+25+26+28+34+39+41+44+46+47+55 < 5+15+16+21+29+30+32+35+37+42+48+50+52+53+56
19: 1+3+4+5+8+10+11+13+14+16+19+21+24+26+27+28+32+37+40+42+45+47+52 < 7+18+23+29+31+34+36+39+44+49+51+54+55+56
21: 1+2+4+5+6+7+11+12+14+15+21+22+23+27+29+35+36+42+43+44+53+54 < 10+19+20+26+32+33+34+40+41+47+48+49+52+56
26: 1+2+3+5+6+7+8+9+10+15+16+17+18+19+20+29+30+31+32+33+34+48+49+56 = 14+27+28+42+43+44+45+46+47+53+54+55

a(57) = 4
18: 2+3+4+7+9+10+12+14+18+19+22+24+27+32+35+36+39+43+45+49+51 < 5+13+16+21+26+28+31+34+38+41+42+48+50+53+56
21: 1+3+4+5+8+10+11+14+16+18+20+21+25+29+31+35+38+40+41+46+51+53+57 < 7+15+19+24+26+30+36+37+39+42+45+47+48+52+55+56
25: 1+2+4+5+6+7+11+12+13+15+18+21+23+24+26+29+32+34+37+41+44+45+48+55 = 10+20+22+31+33+36+40+43+47+51+53+54+56+57
33: 1+2+3+5+6+7+8+9+10+13+15+16+17+19+20+22+26+28+30+31+33+36+42+47+56 = 18+29+32+35+41+44+45+46+49+51+55+57

a(58) = 4
17: 2+3+4+8+9+10+12+13+14+21+22+25+26+27+29+30+37+42+43+45+46+47+56 < 5+15+16+20+31+32+33+35+36+41+48+49+51+52+53+55
20: 1+3+4+5+7+10+11+13+14+16+19+20+24+27+28+30+33+36+40+41+44+47+53 = 8+17+21+25+31+37+38+42+45+48+50+51+56+57
21: 1+2+4+5+6+8+11+12+14+15+17+20+23+25+28+29+31+35+38+41+45+51+55+57 < 10+19+22+27+33+34+37+40+43+47+49+50+53+54+56
26: 1+2+3+5+6+7+8+9+10+15+16+17+18+19+21+22+31+32+33+34+37+48+49+50 < 14+28+29+30+41+44+45+46+47+55+57+58

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

Scary Coins

My coauthor Konstantin Knop publishes cute math problems in his blog (in Russian). Recently he posted a coin weighing problem that was given at the 2010 Euler math Olympiad in Russia to eighth graders. The author of the problem is Alexander Shapovalov.

Among 100 coins exactly 4 are fake. All genuine coins weigh the same; all fake coins, too. A fake coin is lighter than a genuine coin. How would we find at least one genuine coin using two weighings on a balance scale?

It is conceivable that your two weighings may find more than one genuine coin. The more difficult question that Konstantin and his commentators discuss is the maximum number of genuine coins you can guarantee to identify in two weighings. Konstantin and the others propose 14 as the answer, but do not have a proof yet.

I wonder if one of you can find a bigger number than Konstantin or alternatively a proof that indeed 14 is the largest possible.

You might ask, considering the title of this piece, why I think that coins are scary. No, I am not afraid of coins. It scares me that this problem was given to eighth graders in Russia, because I cannot imagine that it would be given to kids that age in the USA.

By the way, ten eighth grade students in Russia solved this problem during the competition.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

On Mice and Coins

The following problem was sent to me by Joel Lewis.

You have 12 mice, one of which eats faster than all the others. You need to find it. You have a supply of standard cupcakes that you value very much and want to minimize how many of them you have to use. The only way you can find the mouse is to give cupcakes to several groups of mice and see which group is the fastest.

We assume that mice chew at a constant speed and all the mice in one group can attack the cake at the same time. I love this puzzle because I love coin problems. Let me restate the puzzle as a coin problem:

You have 12 coins, one of which is fake and weighs less than all the others. You have a balance scale with multiple pans, that is you can weigh several things at once and order them by weight. You do not care about the total number of weighings as in most classical coin puzzles, instead, this time using a pan is expensive and you want to find the fake coin with as few pan-uses as possible.

Spoiler warning: below I will discuss the solution for n mice.

You can, of course, give a cake to every mouse and see which one finishes first. You can save one cake by giving cakes at the same time to all but one of the mice. If everyone finishes simultaneously, the faster mouse is the unfed one.

It wastes cakes to give them to unequally-sized groups of mice. We can do better by copying the classical way to find a fake coin with the minimum number of weighings. That is, for each test, divide the mice into three groups as evenly as possible and give a cake to each of two equally-sized groups. The number of cakes you use is about 2log3n.

I wouldn’t have written this essay if that was the solution. Sometimes you can do even better. For example, you can find the faster mouse out of 12 using only 5 cakes.

First, if you give out k cakes in one test, the test tells you which of k+1 groups the mouse is in. In the worst case, the faster mouse will be in the biggest group, so you should minimize the biggest group. Hence, your groups that get cakes should have ⌈n/(k+1)⌉ mice.

A test with one cake gives no information. I argue that giving out more than three cakes doesn’t gain anything. Indeed, suppose we use four cakes in a test. That is, we divide the mice into five groups A, B, C, D and E, of which the first four are the same size. We can simulate the test by two tests in each of which we give out two cakes. In the first test we give cakes to A+B and C+D. If one of the groups is faster, say A+B, then in the second test give cakes to A and B; if not, E has the faster mouse. I leave it as an exercise to simulate a test with more than four cakes.

Thus, in an optimal strategy we can use two or three cakes per test. Also, if you give one test with k − 1 cakes and the next one with m − 1 cakes, you can switch them with the same effect. The largest group after either order of tests will have at most ⌈n/km⌉ mice.

I don’t need two tests of three cakes each, which would give me a group of size at least ⌈n/16⌉. I can achieve the same result with three tests of two cakes each, with the faster mouse restricted to a group of size at most ⌈n/27⌉.

That means all my tests use two cakes, except I might use three cakes once. It doesn’t matter in what order I conduct the tests, so I can wait until the end to use three cakes. I leave it as an exercise to the reader that the only small number of mice for which we would prefer three cakes is four. From this it follows quickly that for numbers of mice between 3 * 3i + 1 and 4 * 3i, the number of cakes is 2i + 1. For numbers between 4 * 3i + 1 and 3i+2 the answer is 2i + 2.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

Baron Münchhausen and the Riemann Hypothesis

by Tanya Khovanova, Konstantin Knop, Alexey Radul and Peter Sarnak

Let n coins weighing 1, 2, … n be given. Baron Münchhausen knows which coin weighs how much, but his audience does not. Define a(n) to be the minimum number of weighings the Baron must conduct on a balance scale, so as to unequivocally demonstrate the weight of at least one of the coins.

In the paper Baron Münchhausen’s Sequence, three of us completely described the Baron’s sequence. In particular, we proved that a(n) ≤ 2. Here we would like to outline another proof idea, which is interesting in part because it touches the Riemann hypothesis.We denote the total weight of coins in some set A as |A|.

Lemma. Numbers n that can be represented as Ti + Tj + Tk = 3n, where i ≤ j < k, such that there is a subset A of coins from j + 1 to k such that n = Tj + |A|, can be done in two weighings.

Proof. Suppose Ti + Tj + Tk = 3n and there is a subset A of coins from j + 1 to k such that n = Tj + |A|. We propose the two weighings

[1…j] + A = n

and

[1…i] + B = n + A,

where B is the complement of A in {j + 1, j + 2, … , k}.

If we sum up twice the first weighing with the second weighing we get

3[1…i] + 2[(i + 1)…j] + 2A + B = 3n + A.

In other words, three times the weight of the coins that were on the left side in both weighings, plus twice the weight of the coins that were on the left side in only the first weighing, plus the weight of the coins that were moved from the left cup to the right cup plus the weight of the coins on the left cup in only the second weighing equals three times the weight of the coin on the right cup in both weighings. Hence three times the weight of the coin on the right cup in both weighings can’t be less than the weight of the k other coins that participated plus the weight of the j coins that were on the left cup in the first weighing and weren’t moved to the right cup, plus the weight of the i coins that were one the left cup in both the first and the second weighing. But because Ti + Tj + Tk = 3n, then 3n is the smallest possible weight of any set of i plus j plus k coins, the coin on the right cup in both weighings has to be the n-coin.

We checked that any number up to 600,000 except 20 can be represented so as to satisfy the Lemma. To show how to solve 20 coins in two weighings is easy, and, as usual, is left as an exercise for the reader. Next, we want to look at the following lemma.

Lemma. Given a set of consecutive numbers {(j + 1), … , k}, if k > 2j + 2, then it is possible to find a subset in the set that sums up to any number in the range from j + 1 to (j + k + 1)(k – j)/2 – j – 1.

We won’t prove the lemma, but it means that if k is about twice larger than j, then we have a lot of flexibility for building our set A in the weighing above. For moderately large n (where 600000 >> “moderately large”), it is not hard to prove that this flexibility is sufficient.

Now the question becomes: can we find such a decomposition into triangular numbers? It is enough to find a representation Ti + Tj + Tk = 3n, where Tk is at least 81% of 3n.

We know that decompositions into triangular numbers are associated with decompositions into squares. Namely, if Ti + Tj + Tk = 3n, then (2i + 1)2 + (2j + 1)2 + (2k + 1)2 = 24n + 3. If the largest square is at least 81% of 24n + 3, then the largest triangular number in the decomposition of 3n is at least 81%.

There is a theorem (W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, in Inventiones Math 92 (1988) p.73-90) that states that in the limit the decompositions of numbers into three squares are equidistributed. That is, if we take some region on the unit sphere x2 + y2 + z2 = 1 (for example, the region |z| > 0.8) and view decompositions of 24n + 3 into squares as points on the sphere x2 + y2 + z2 = 24n + 3, then, as n grows, decompositions whose projections fall into our chosen region are guaranteed to appear.

This theorem is great, because it tells us that for large enough n we will always be able to find a decomposition of 24n + 3 into triangle numbers where one of the triangle numbers will be much bigger than the others, and it will be possible to prove the weight of the n coin in two weighings. Unfortunately, this summary, as stated, does not tell us how large that n needs to be. So we need some exact estimates.

The number of decompositions of m into sums of three squares is about the square root of m. More precisely, it is possible to compute a number N, such that for any number m > N, with at most one exception, the number of decompositions is at least Cm1/2−1/30, where C is a known constant.

The more specific statement of Duke’s theorem is that if the number of solutions to the quadratic x2 + y2 + z2 = 24n + 3 is large, for a computable value of “large”, then the solutions are equidistributed. More precisely, let us denote 3n by m and fix an area Ω on the unit sphere. Then the number of solutions (x, y, z) such that the unit vector (x, y, z)/|(x, y, z)| belongs to Ω is

1/(4π) Ωh(8m+3) + E(m),

where h(8m+3) is the total number of solutions of x2 + y2 + z2 = 24n + 3, and E(m) is an error term, which starting from some number satisfies the inequality: E(m) ≤ 1000m1/2-1/7.

That’s pretty good, because combining these two lets us, at least in principle, actually calculate an N such that for all n > N except maybe one a(n) = 2. After that we hoped to write a program to exhaustively search smaller numbers by computer.

This situation is still somewhat annoying, because that possible exception must then be propagated into the proof, and if we are not careful, possibly into the final theorem. (“No matter how many coins the Baron has, he can prove the weight of one in at most two weighings, except maybe one number of coins, and we don’t know which…”) This is where the Riemann Hypothesis comes in. If the Riemann Hypothesis is true, then that exception isn’t there, and all is sunlight and flowers.

The beauty of the Baron’s puzzle is such that we actually do not need the Riemann hypothesis. As we can use unbalanced weighings, it is enough to find a good decomposition for one out of the four numbers 3n, 3n-1, 3n-2, or 3n-3.

Instead of finding all these exact estimates we found a different elementary proof of our theorem. But we are excited that methods that are used in very advanced number theory can be used to solve a simple math problem that can be described to middle school children.

It would be great if someone decided to finish this proof.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

Yet Another Coin Weighing Problem

I got this problem from my friend, a middle-school math teacher, Tatyana Finkelstein.

We have N coins that look identical, but we know that exactly one of them is fake. The genuine coins all weight the same. The fake coin is either lighter or heavier than a real coin. We also have a balance scale.
Unlike in classical math problems where you need to find the fake coin, in this problem your task is to figure out whether the fake coin is heavier or lighter than a real coin. Your challenge is that you are only permitted to use the scale twice. Find all numbers N for which this can be done.

I would like to add an extra twist to the problem above. It is conceivable that there might be several different strategies for finding the direction in which the weight of the fake coin deviates from the real coins. In this case it is better to choose a strategy that can redeem as many coins as possible — that is, to identify the maximum number of coins as real.

The number of coins you identify as real depends on the outcomes of your weighings. Then what is the precise definition of the best strategy?

Let us call a strategy k-redeem if after the weighings you are guaranteed to demonstrate that k coins are real, but you are not guaranteed to demonstrate that k+1 coins are real. Your task is to analyze two-weighing strategies and choose the most profitable one — the strategy that guarantees to redeem the largest possible number of coins, that is, a k-redeem strategy for the largest k.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail

Another Coins Sequence, jointly with Alexey Radul

Konstantin Knop sent me the following coins puzzle, which was created by Alexander Shapovalov and first appeared at the Regional round of the all-Russian math Olympiad in 2000.

Baron Münchhausen has 8 identical-looking coins weighing 1, 2, …, 8 grams. The Baron knows which coin is which and wants to demonstrate to his guests that he is right. He plans to conduct one weighing on a balance scale, so that the guests will be convinced about the weight of one of the coins. Can the Baron do this?

This being a sequence-lover blog, we want to create a sequence out of this puzzle. The sequence is the following: Let the Baron initially have n identical-looking coins that weigh exactly 1, 2, …, n grams. Then a(n) is the minimum number of weighings on a balance scale that the Baron needs in order to convince his guests about the weight of one of those coins.

The original puzzle can be restated as asking whether a(8) = 1. The sequence is defined starting from index 1 and the first several terms are easy to calculate: 0, 1, 1, 1, 2, 1, 1, 1. Can you continue this sequence?

Let’s look at where ones occur in this sequence:

Theorem. If the weight of a coin can be confirmed with one weighing, then one cup of that weighing must contain all the coins with weights from 1 to some i, and the other cup must contain all the coins with weights from some j to n. Furthermore, either the scale must balance, or the cup containing the 1-gram coin must be lighter.

Proof. What does it mean for the Baron to convince his guests about the weight of some coin with one weighing? From the perspective of the guests, a weighing is a number of coins in one cup, a number of coins in the other cup, and a number of coins not on the scale, together with the result the scale shows (one or the other cup heavier, or both the same weight). For the guests to be convinced of the weight of some particular coin, it must therefore be the case that all possible arrangements of coin weights consistent with that data agree on the weight of the coin in question. Our proof strategy, therefore, is to look for ways to alter a given arrangement of coin weights so as to change the weight given to the coin whose weight is being demonstrated, thus arriving at a contradiction.

First, obviously, the coin whose weight k the Baron is trying to confirm has to be alone in its group: either alone on some cup or the only coin not on the scale. After that we can divide the proof of the theorem into several cases.

Case 1. The coin k is on a cup and the scale is balanced. Then we want to show two things: k = n, and the coins on the other cup weigh 1, 2, …, i grams for some i. For the first part, observe that if k < n, then the coin with weight k+1 must not be on the scale (otherwise it would overbalance coin k). Therefore, we can substitute coin k+1 for coin k, and substitute a coin one gram heavier for the heaviest coin that was on the other cup, and produce thereby a different arrangement with the same observable characteristics but a different weight for the coin the Baron claims has weight k.

To prove the second part, suppose the contrary. Then it is possible to substitute a coin 1 gram lighter for one of the coins on the other cup. Now, if coin k-1 is not on the scale, we can also substitute k-1 for k, and again produce a different arrangement with the same observable characteristics but a different weight for the coin labeled k. On the other hand, if k-1 is on the scale but k-2 is not, then we can substitute k-2 for k-1 and then k-1 for k and the weighing is again unconvincing. Finally, if both k-1 and k-2 are on the scale, and yet they balance k, then k=3 and the theorem holds.

Consequently, k = n = 1 + 2 + … + i is a triangular number.

Case 2. The coin k is on the lighter cup of the scale. Then: first, k = 1, because otherwise we could swap k and the 1-gram coin, making the light cup lighter and the heavy cup heavier or unaffected; second, the 2-gram coin is on the heavy cup and is the only coin on the heavy cup, because otherwise we could swap k with the 2-gram coin and not change the weights by enough to affect the imbalance; and finally n = 2 because otherwise we could change the weighing 1 < 2 into 2 < 3.

Thus the theorem holds, and the only example of this case is k = 1, n = 2.

Case 3. The coin k is on the heavier cup of the scale. Then k = n and the lighter cup consists of some collection of the lightest available coins, by the same argument as Case 1 (but even easier, because there is no need to maintain the balance). Furthermore, k must weigh exactly 1 gram more than the lighter cup, because otherwise, k-1 is not on the lighter cup and can be substituted for k, making the weighing unconvincing.

Consequently, k = n = (1 + 2 + … + i) + 1 is one more than a triangluar number.

Case 4. The coin k is not on a cup and the scale is not balanced. Then, since k must be off the scale by itself, all the other coins must be on one cup or the other. Furthermore, all coins heavier than k must be on the heavier cup, because otherwise we could make the lighter cup even lighter by substituting k for one of those coins. Likewise, all coins lighter than k must be on the lighter cup, because otherwise we could make the heavier cup even heavier by substituting k for one of those coins. So the theorem holds; and furthermore, the cups must again differ in weight by exactly 1 gram, because otherwise we could swap k with either k-1 or k+1 without changing the weights enough to affect the result on the scale.

Consequently, the weight of the lighter cup is k(k-1)/2, the weight of the heavier cup is 1 + k(k-1)/2. Thus the total weight of all the coins is n(n+1)/2 = k2+1. In other words, case 4 is possible iff n is the index of a triangular number that is one greater than a square.

Case 5. The coin k is not on a cup and the scale is balanced. This case is hairier than all the others combined, so we will take it slowly (noting first that all the coins besides k must be on some cup).

Lemma 1. The two coins k-1 and k-2 must be on the same cup, if they exist (that is, if k > 2). Likewise k-2 and k-4; k+1 and k+2; and k+2 and k+4.

Proof. Suppose they’re not. Then we can rotate k, k-1, and k-2, that is, put k on the cup with k-1, put k-1 on the cup with k-2, and take k-2 off the scale. This makes both cups heavier by one gram, producing a weighing with the same outward characteristics as the one we started with, but a different coin off the scale. The same argument applies to the other three pairs of coins we are interested in, mutatis mutandis.

Lemma 2. The four coins k-1, k-2, k-3 and k-4 must be on the same cup if they exist (that is, if k ≥ 5).

Proof. By Lemma 1, the three coins k-1, k-2, and k-4 must be on the same cup. Suppose coin k-3 is on the other cup. Then we can swap k-1 with k-3 and k with k-4. Each cup becomes heavier by 2 grams without changing the number of coins present, the balance is maintained, and the Baron’s guests are not convinced.

Lemma 3. If coin k-4 exists, that is if k ≥ 5, all coins lighter than k must be on the same cup.

Proof. By Lemma 2, the four coins k-1, k-2, k-3 and k-4 must be on the same cup. Suppose some lighter coin is on the other cup. Call the heaviest such coin c. Then, by choice of c, the coin with weight c+1 is on the same cup as the cluster k-1, …, k-4, and is distinct from coin k-2 (because c is on a different cup from k-3). We can therefore swap c with c+1 and swap k with k-2. This increases the weight on both cups by 1 gram without changing how many coins are on each, but moves k onto the scale. The Baron’s guests are again unconvinced.

Lemma 4. The theorem is true for k ≥ 5.

Proof. By Lemma 3, all coins lighter than k must be on the same cup. Further, if a coin with weight k+4 exists, then by the symmetric version of Lemma 3, all coins heavier than k must also be on the same cup. They must be on the other cup from the coins lighter than k because otherwise the scale wouldn’t balance, and the theorem is true.

If no coin with weight k+4 exists, that is, if n ≤ k+3, how can the theorem be false? All the coins lighter than k must be on one cup, and their total weight is k(k-1)/2. Further, in order to falsify the theorem, at least one of the coins heavier than k must also be on that same cup. So the minimum weight of that cup is now k(k-1)/2 + k+1. But we only have at most two coins for the other cup, whose total weight is at most k+2 + k+3 = 2k + 5. For the scale to even have a chance of balancing, we must have

k(k-1)/2 + k+1 ≤ 2k + 5 ⇔ k(k-1)/2 ≤ k + 4 ⇔ k(k-1) ≤ 2k + 8 ⇔ k2 – 3k – 8 ≤ 0.

Finding the largest root of that quadratic we see that k < 5.

So for k ≥ 5, the collection of all coins lighter than k is heavy enough that either one needs all the coins heavier than k to balance them, or there are enough coins heavier than k that the theorem is true by symmetric application of Lemma 3.

Completion of Case 5. It remains to check the case for k < 5. If n > k+3, then coin k+4 exists. If so, all the coins heaver than k must be on the same cup. Furthermore, since k is so small, they will together weigh more than half the available weight, so the scale will be unbalanceable. So k < 5 and n ≤ k+3 ≤ 7.

For lack of any better creativity, we will tackle the remaining portion of the problem by complete enumeration of the possible cases, except for the one observation that, to balance the scale with just the coin k off it, the total weight of the remaining coins, that is, n(n+1)/2 – k must be even. This observation cuts our remaining work in half. Now to it.

Case 5. Seven Coins. n = 7. Then 5 > k ≥ n – 3 = 4, so k = 4. Then the weight on each cup must be 12. One of the cups must contain the 7 coin, and no cup can contain the 4 coin, so the only two weighings the Baron could try are 7 + 5 = 1 + 2 + 3 + 6, and 7 + 3 + 2 = 1 + 5 + 6. But the first of those is unconvincing because k+1 = 5 is not on the same cup as k+2 = 6, and the second because it has the same shape as 7 + 3 + 1 = 2 + 4 + 5 (leaving out the 6-gram coin instead of the asserted 4-gram coin).

Case 5. Six Coins. n = 6. Then 5 > k ≥ n – 3 = 3, and n(n+1)/2 = 21 is odd, so k must also be odd. Therefore k=3, and the weight on each cup must be 9. The 6-gram coin has to be on a cup and the 3-gram coin is by presumption out, so the Baron’s only chance is the weighing 6 + 2 + 1 = 4 + 5, but that doesn’t convince his skeptical guests because it looks too much like the weighing 1 + 3 + 4 = 6 + 2.

Case 5. Five Coins. n = 5. Then 5 > k ≥ n – 3 = 2, and n(n+1)/2 = 15 is odd, so k must also be odd. Therefore k=3, and the weight on each cup must be 6. The only way to do that is the weighing 5 + 1 = 2 + 4, which does not convince the Baron’s guests because it looks too much like 1 + 4 = 2 + 3.

Case 5. Four Coins. n = 4. Then the only way to balance a scale using all but one coin is to put two coins on one cup and one on the other. The only two such weighings that balance are 1 + 2 = 3 and 1 + 3 = 4, but they leave different coins off the scale.

The remaining cases, n < 4, are even easier. That concludes the proof of Case 5.

Consequently, by the argument similar to the one in case 4 we can show that the number of coins in case 5 must be the index of a square triangular number.

This concludes the proof of the theorem.

Now we can describe all possible numbers of coins that allow the Baron to confirm a coin in one weighing, or, in other words, the indices of ones in the sequence a(n). The following list corresponds to the five cases above:

  1. n is a triangular number. For example, for six coins the weighing is 1+2+3 = 6.
  2. n = 2. The weighing is 1 < 2.
  3. n is a triangular number plus one. For example, for seven coins the weighing is 1+2+3 < 7.
  4. n is the index of a triangular number that is a square plus one. For example, the forth triangular number, which is equal to ten, is one greater than a square. Hence the weighing 1+2 < 4 can identify the coin that is not on the cup. The next number like this is 25. And the corresponding weighing is 1+2+…+17 < 19+20 +…+25.
  5. n is the index of a square triangular number. For example, we know that the 8th triangular number is 36, which is a square: our original problem corresponds to this case.

If we have four coins, then the same weighing 1+2 < 4 identifies two coins: the coin that weighs three grams and is not in a cup and the coin weighing four grams that is in a cup. The other case like this is for two coins. Comparing them to each other we can identify each of them. It is clear that there are no other cases like this. Indeed, for the same weighing to identify two different coins, it must be the n-gram on the cup, and the n-1 coin off the scale. From here we can see that n can’t be big.

As usual we want to give something to think about to our readers. We have given you the list of sequences describing all the numbers for which the Baron can prove the weight of one coin in one weighing. Does there exist a number greater than four that belongs to two of these sequences? In other words, does there exist a total number of coins such that the Baron can have two different one-weighing proofs for two different coins?

To conclude this essay we would like to note that the puzzle we are discussing is related to the puzzle in one of Tanya’s previous posts:

You have 6 coins weighing 1, 2, 3, 4, 5 and 6 grams that look the same, except for their labels. The number (1, 2, 3, 4, 5, 6) on the top of each coin should correspond to its weight. How can you determine whether all the numbers are correct, using the balance scale only twice?

The latter puzzle appeared at the last round of Moscow math Olympiad in 1991. The author of this problem was Sergey Tokarev.

Share:facebooktwittergoogle_plusredditpinterestlinkedinmail