## The First Moscow Olympiad

The first Moscow Math Olympiad was conducted in 1935. Today, eighty years later, I decided to check it out. Most of the problems look standard, but some of the stereometry problems look too complicated. I found four problems that I really like: all of them are geometry problems.

Problem 1.The lengths of the sides of a triangle form an arithmetic progression. Prove that the radius of the inscribed circle is one third of one of the heights of the triangle.

Problem 2.A median, bisector, and height all originate from the same vertex of a triangle. You are given the three points that are the intersection points of the aforementioned median, bisector, and height with the circumscribed circle. Construct the triangle.

Problem 3.Find the set of pointsPon the surface of a cube such that the main diagonal subtends the smallest possible angle if viewed fromP. Prove that the main diagonal subtends larger angles if viewed from other points on the surface. [Clarification: the two corners the main diagonal passes through don’t count.]

Problem 4.Given three parallel straight lines, construct a square such that three of its vertices belong to these lines.

Each of these problems has a powerful idea that solves it. You can try and solve these problems, but if you want help, the ideas are presented below as hints in a scrambled order.

**Hint.**Rotate by 90 degrees.**Hint.**Consider a circumscribed sphere.**Hint.**The line connecting the intersection point of the bisector with the circle and the circle’s center is parallel to the height.**Hint.**Use Heron’s formula.