From a Puzzle to a Magic Trick

A year ago I posted a chessboard puzzle. Recently I stumbled on a September 2008 issue of “Math Horizons” where it was presented as a magic trick.

When the magician leaves the room, the trickees lay out eight coins in a row deciding which side is turned up according to their whim. They also think of a number between 1 and 8 inclusive. The magician’s assistant then flips exactly one of the coins, before inviting the magician back in. The magician looks at the coins and guesses the number that the trickees thought of.

The magician’s strategy can be derived from the solution to the chessboard puzzle. The assistant numbers the coins from zero to seven from left to right. Then s/he flips the coin so that the parity addition (XORing) of all the numbers corresponding to heads is the number that the magician needs to guess. For this trick to work, the number of coins needs to be a power of 2.

Andrey Zelevinsky posted (in Russian) a cool variation of this trick with two decks of cards.

The magician has two identical card decks and he is out of the room for now. A random person from the audience thinks of a card. Next, the audience chooses several cards from the first deck. Then the assistant adds one card from the second deck to the set of chosen cards, lays them on a table, and then invites the magician back. The magician looks at the cards on the table and guesses the card that was thought of.

Unlike in the coin trick above, the number of cards in the deck doesn’t need to be a power of 2. This flexibility is due to the fact that the magician has two decks of cards, as opposed to one set of coins. Having the second deck is equivalent to the assistant in the coin trick being allowed to flip one or ZERO coins.

Share: